We studied unpaired cysteine levels and disulfide bond susceptibility in four different γ-immunoglobulin antibodies using liquid chromatography-mass spectrometry. Our choice of differential alkylating agents ensures that the differential peaks are non-overlapping, thus allowing us to accurately quantify free cysteine levels. For each cysteine residue, we observed no more than 5% to be unpaired, and the free cysteine levels across antibodies were slightly higher in those containing lambda light chains.
View Article and Find Full Text PDFShort aromatic peptides have been observed to assemble into diverse nanostructures, including fibers, tubes, and vesicles, using computational techniques. However, the computational studies have employed top-down coarse-grained (CG) models, which are unable to capture the assembly along with the conformation, packing, and organization of the peptides within the aggregates in a manner that is consistent with the all atom (AA) representation of the molecules. In this study, a hybrid structure- and force-based approach is adapted to develop a bottom-up CG force field of triphenylalanine using reference data from AA trajectories.
View Article and Find Full Text PDFConstructions of the (global) fractal interpolation functions on standard function spaces got a lot of attention in the last centuries. Motivated by the newly introduced local fractal functions corresponding to a local iterated functions system which is the generalization of the traditional iterated functions system we construct the local non-affine - fractal functions in this article. A few examples of the graphs of these functions are provided.
View Article and Find Full Text PDFProtein mimics such as peptoids form self-assembled nanostructures whose shape and function are governed by the side chain chemistry and secondary structure. Experiments have shown that a peptoid sequence with a helical secondary structure assembles into microspheres that are stable under various conditions. The conformation and organization of the peptoids within the assemblies remains unknown and is elucidated in this study via a hybrid, bottom-up coarse-graining approach.
View Article and Find Full Text PDFSpherical surfaces bearing mobile, solvophilic chains are ubiquitous. These systems are found in nature in the form of biological cells bearing carbohydrate chains, or glycans, or in drug delivery systems such as vesicles bearing polyethylene glycol chains and carrying therapeutic molecules. The self-organization of the chains on the spherical surface dictates the stability and functionality of the latter and is determined by key factors such as the interchain, chain-surface interactions, excluded volume, concentration of the chains, and external environment.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2022
Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices.
View Article and Find Full Text PDFFundamental bacterial functions like quorum sensing can be targeted to replace conventional antibiotic therapies. Nanoparticles or vesicles that bind interfacially to charged biomolecules could be used to block quorum sensing pathways in bacteria. Towards this goal, dendronized vesicles (DVs) encompassing polyamidoamine dendron-grafted amphiphiles (PDAs) and dipalmitoyl--3-phosphocholine lipids are investigated using the molecular dynamics simulation technique in conjunction with an explicit solvent coarse-grained force field.
View Article and Find Full Text PDF