A microscale colorimetric assay was designed and implemented for the simultaneous determination of clinical chemistry tests measuring six parameters, including glucose (GLU), total protein (TP), human serum albumin (HSA), uric acid (UA), total cholesterol (TC), and triglycerides (TGs) in plasma samples. The test kit was fabricated using chromogenic reagents, comprising specific enzymes and binding dyes. Multiple colors that appeared on the reaction well when it was exposed to each analyte were captured by a smartphone and processed by the homemade Check6 application, which was designed as a colorimetric analyzer and simultaneously generated a report that assessed test results against gender-dependent reference ranges.
View Article and Find Full Text PDFThe microfluidic paper-based analytical device (μPAD) platform is gaining attention as a low-cost, portable, and disposable detection tool. However, the limitations of traditional fabrication methods include poor reproducibility and the use of hydrophobic reagents. In this study, an in-house computer-controlled X-Y knife plotter and pen plotter were used to fabricate μPADs, resulting in a simple, more rapid, reproducible process that consumes less volume of reagents.
View Article and Find Full Text PDFVanadium-doped porous CoO (V-porous CoO) was synthesized via a simple soft-templating method and used as a superior peroxidase mimic for the simultaneous colorimetric determination of glucose and total cholesterol (TC) in whole blood samples on a two-dimensional microfluidic paper-based analytical device (2D-μPAD). The large surface area and the presence of two metals in V-porous CoO contributed to its excellent catalytic activity toward 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'- tetramethylbenzidine (TMB) with Michaelis-Menten constants () of 0.1301 and 0.
View Article and Find Full Text PDFNitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) are demonstrated as superior peroxidase mimic antibody labels alternative to horseradish peroxidase (HRP) in an immunoassay, potentially overcoming some of the inherent disadvantages of HRP and other enzyme mimicking nanomaterials. They revealed efficient peroxidase-like activity and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to form the intense blue product (at 620 nm) in the presence of hydrogen peroxide (HO). Using low-density lipoprotein (LDL) as a model target, an ultra-low limit of detection (0.
View Article and Find Full Text PDFThis work presents a simple hydrothermal synthesis of nitrogen-doped carbon dots (N-CDs), fabrication of microfluidic paper-based analytical device (μPAD), and their joint application for colorimetric determination of total cholesterol (TC) in human blood. The N-CDs were characterized by various techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD), and the optical and electronic properties of computational models were studied using the time-dependent density functional theory (TD-DFT). The characterization results confirmed the successful doping of nitrogen on the surface of carbon dots.
View Article and Find Full Text PDFThis work presents the development and application of a novel analytical approach for the determination of acid and base concentrations by titration using a microfluidic thread-based analytical device (μTAD). This approach proved to be a simple to fabricate and to use, high precision, and cost-efficient means of acid-base quantification. The μTAD was fabricated by immobilizing the untreated cotton threads onto a wood frame, followed by pre-coating with an indicator (20 μL) and a primary standard solution (3 μL), and was tested using real samples including drug, food, and household products where 3 μL of each sample was dropped onto the center of a thread.
View Article and Find Full Text PDF