This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of -hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)] complex.
View Article and Find Full Text PDFA comprehensive DFT investigation has been presented to predict how a carboxylate-rich macrocycle would affect the reactivity of a non-heme Fe(IV)O complex towards C-H activation. The popular non-heme iron oxo complex [Fe(O)(N4Py)], (N4Py = ,-(bis(2-pyridyl)methyl)-bis(2-pyridylmethyl)amine) (1), has been selected here as the primary compound. It is transformed to the compound [Fe(O)(Bu-P2DA)], where Bu-P2DA = -(1',1'-bis(2-pyridyl)pentyl)iminodiacetate (2) after the replacement of two pyridine donors of N4Py with carboxylate groups.
View Article and Find Full Text PDFA comprehensive density functional theory investigation has been presented towards the comparison of the C-H activation reactivity between high-valent iron-oxo and ruthenium-oxo complexes. A total of four compounds, , [Ru(IV)O(tpy-dcbpy)] (1), [Fe(IV)O(tpy-dcbpy)] (1'), [Ru(IV)O(TMCS)] (2), and [Fe(IV)O(TMCS)] (2'), have been considered for this investigation. The macrocyclic ligand framework tpy(dcbpy) implies tpy = 2,2':6',2''-terpyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine, and TMCS is TMC with an axially tethered -SCHCH group.
View Article and Find Full Text PDFDensity functional theory investigations were performed to address the C-H activation reactivity and the influence of quantum mechanical tunneling catalyzed by a non-heme iron(IV)-oxo complex, namely [FeOdpaq-X], where the macrocyclic ligand dpaq represents {2-[bis(pyridine-2-yl-methyl)]amino--quinolin-8-yl-acetamido}. Counter ion and solvent corrections were incorporated in the computation to avoid self-interaction error. To find the impact of the indirectly linked substituents to the central metal atom, Fe, the macrocyclic ligand dpaq was substituted at the 5-position of its quinoline moiety represented as dpaq-X and the reactivity and hydrogen tunneling were compared with the parent ligand dpaq-H.
View Article and Find Full Text PDF