The mammalian suprachiasmatic nucleus (SCN) is the principal circadian clock that synchronizes daily behavioral and physiological responses in response to environmental cues. Here, we present a protocol for harvesting mouse SCN by vibrating microtome for diurnal transcriptome analysis. We describe steps for mouse entrainment, isolation of the SCN, tissue preparation, slicing with a vibratome, and handling of the harvested SCN for RNA extraction.
View Article and Find Full Text PDFThe mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, synchronizes and maintains daily cellular and physiological rhythms across the body, in accordance with environmental and visceral cues. Consequently, the systematic regulation of spatiotemporal gene transcription in the SCN is vital for daily timekeeping. So far, the regulatory elements assisting circadian gene transcription have only been studied in peripheral tissues, lacking the critical neuronal dimension intrinsic to the role of the SCN as central brain pacemaker.
View Article and Find Full Text PDFCircadian clocks are autonomous daily timekeeping mechanisms that allow organisms to adapt to environmental rhythms as well as temporally organize biological functions. Clock-controlled timekeeping involves extensive regulation of rhythmic gene expression. To date, relatively few clock-associated promoter elements have been identified and characterized.
View Article and Find Full Text PDFMany organisms monitor the annual change in day length and use this information for the timing of their seasonal response. However, the molecular mechanisms underlying photoperiodic timing are largely unknown. The wasp Nasonia vitripennis is an emerging model organism that exhibits a strong photoperiodic response: Short autumnal days experienced by females lead to the induction of developmental arrest (diapause) in their progeny, allowing winter survival of the larvae.
View Article and Find Full Text PDF