Publications by authors named "Ajoy Pal"

A tri-fluorophoric molecular probe (1) with three different derivatized fluorophores, i.e. anthracene (An), 7-nitrobenz-2-oxa-1,3-diazole (NBD) and rhodamine-B (Rh) appended on to a Tren [tris-(2-aminoethyl)amine] receptor was demonstrated to exhibit metal ion induced ratiometric fluorescence signalling through the initiation of a two-step fluorescence resonance energy transfer (FRET) process owing to a compatible and substantial spectral overlap of electronic absorption and fluorescence of initial donor-intermediate donor/acceptor-final acceptor pairs.

View Article and Find Full Text PDF

A 3-aminomethyl-(2-amino-1-pyridyl) coupled amino-ethyl-rhodamine-B based probe (2) exhibited simultaneous chromogenic and fluorogenic dual mode signaling responses in the presence of Hg(II) ions only among all the metal ions investigated in an organic aqueous medium. The spiro-cyclic rhodamine signaling subunit undergoes complexation induced structural transformation to result in absorption and fluorescence modulation. Its complexation induced signaling exhibited reversibility with various contrasting reagents having higher affinity towards Hg(II) ions, such as anions (AcO(-)) and competing chelating agents (En).

View Article and Find Full Text PDF

TiO(2), N-TiO(2) and S-TiO(2) samples have been prepared by various chemical methods. These samples were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Laser Raman spectrometer, UV-Visible spectrophotometer, field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). X-ray powder diffraction study reveals that all three samples are single anatase phase of titania and the crystallinity of titania decreases with sulphur doping whereas nitrogen doping does not affect it.

View Article and Find Full Text PDF

The new signaling probes 2-6, rhodamine-B derivatives of various receptors which contain different donor atoms for effective metal ion coordination, were synthesized and their absorption as well as fluorescence spectral responses were evaluated in the presence of various metal ions. All these probes along with the reference probe 1 have exhibited optimal metal ion-induced absorption and fluorescence enhancement with Hg(II) ion in the longer wavelength region (>500 nm) in MeCN, exploiting the spectral characteristics of metal ion-induced structural transformation of rhodamine. The selectivity and sensitivity towards Hg(II) ion were better pronounced in MeCN-H(2)O (1 : 1 v/v) medium, implying the role of the solvent molecules, water in particular, in the preferential Hg(II) coordination environment.

View Article and Find Full Text PDF

An acyclic amino-receptor based bi-fluorophoric signaling system 3 exhibits water-induced simultaneous dual channel chromogenic and fluorogenic signal modulation. Its micromolar solution in various organic solvents exhibits an enhancement in absorption in the presence of water in trace amounts through the water-induced delactonization of rhodamine dye, rendering a visual perception as a function of colour change. The presence of water molecules also facilitates a fluorescence resonance energy transfer (FRET) from the excited nitro-benz-oxa-diazole fluorophore to rhodamine dye of 3 and leads to an enhancement of emission up to a second order of magnitude.

View Article and Find Full Text PDF