Several lines of evidence suggest that chronic exposure to cannabinoids during adolescence may increase the risk of schizophrenia. Studies of the disorder have identified altered cortical dopaminergic neurotransmission. In this study, we hypothesised that heightened endocannabinoid system activation via chronic exposure to a highly potent cannabinoid receptors agonist in adolescent rats would cause long-lasting neurobiological changes that may dramatically alter expression and functions of dopamine metabolising enzymes, comethyl-o-transferase (COMT) and monoamine oxidases MAO-A and MAO-B.
View Article and Find Full Text PDFThis study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain) were divided into four groups of five (n = 5) mice each. A set of mice (Nic) received subcutaneous nicotine (2.
View Article and Find Full Text PDFBackground: Vascular occlusion and cyanide neurotoxicity induces oxidative stress and degeneration in the brain. This oxidant induced stress changes the vascular dynamics of cerebral blood vessels, and participates in homeostatic response mechanisms which balance oxygen supply to hypoxic stress-sensitive neurons. The associated changes in vascular morphology include remodeling of the microvasculature and endothelial changes, alterations in regional circulation and variations in the blood brain barrier (BBB).
View Article and Find Full Text PDFAlthough oxidative stress is characteristic of global vascular occlusion and cyanide toxicity, the pattern of cerebral metabolism reconditioning and rate of progression or reversal of neural tissue damage differ for both forms of ischemia. Thus, it is important to compare cognitive and motor functions in both models of ischemia involving cyanide treatment (CN) and vascular occlusion (VO). Adult Wistar rats (N=30) were divided into three groups; VO (n=12), CN (n=12) and Control-CO (n=6).
View Article and Find Full Text PDFGlia activation and neuroinflamation are major factors implicated in the aetiology of most neurodegenerative diseases (NDDs). Several agents and toxins have been known to be capable of inducing glia activation an inflammatory response; most of which are active substances that can cause oxidative stress by inducing production of reactive oxygen species (ROS). Neurogenesis on the other hand involves metabolic and structural interaction between neurogenic and glia cells of the periventricular zone (PVZ); a region around the third ventricle.
View Article and Find Full Text PDF