Publications by authors named "Ajithkumar Vasanthakumar"

Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are key immune regulators that have shown promise in enhancing cardiac repair post-MI, although the mechanisms remain elusive. Here, we show that rapidly increasing Treg number in the circulation post-MI via systemic administration of exogenous Tregs improves cardiac function in male mice, by limiting cardiomyocyte death and reducing fibrosis. Mechanistically, exogenous Tregs quickly home to the infarcted heart and adopt an injury-specific transcriptome that mediates repair by modulating monocytes/macrophages.

View Article and Find Full Text PDF

Adipose tissue stores excess energy and produces a broad range of factors that regulate multiple physiological processes including systemic energy homeostasis. Visceral adipose tissue (VAT) plays a particularly important role in glucose metabolism as its endocrine function underpins food uptake and energy expenditure. Caloric excess triggers VAT inflammation which can impair insulin sensitivity and cause metabolic deregulation.

View Article and Find Full Text PDF

Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (T) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct T cell populations: prototypical serum stimulation 2-positive (ST2) T cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3) T cells that are enriched in females.

View Article and Find Full Text PDF

The intestine is home to an intertwined network of epithelial, immune, and neuronal cells as well as the microbiome, with implications for immunity, systemic metabolism, and behavior. While the complexity of this microenvironment has long since been acknowledged, recent technological advances have propelled our understanding to an unprecedented level. Notably, the microbiota and non-immune or structural cells have emerged as important conductors of intestinal immunity, and by contrast, cells of both the innate and adaptive immune systems have demonstrated non-canonical roles in tissue repair and metabolism.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, many patients fail to respond to this therapy or experience side effects. Recently, gut microbiota have emerged as a key determinant of ICB efficacy and toxicity, making manipulation of the microbiome a novel therapeutic strategy with which to improve ICB outcomes.

View Article and Find Full Text PDF

This commentary article highlights two recently published studies, which for the first time revealed the immunological underpinnings of sex-bias in cancer incidence and mortality. These studies showed that the androgen receptor restrains anti-tumour immunity in males by repressing cytotoxic genes in CD8 T cells.

View Article and Find Full Text PDF

Glucose is a vital source of energy for all mammals. The balance between glucose uptake, metabolism and storage determines the energy status of an individual, and perturbations in this balance can lead to metabolic diseases. The maintenance of organismal glucose metabolism is a complex process that involves multiple tissues, including adipose tissue, which is an endocrine and energy storage organ that is critical for the regulation of systemic metabolism.

View Article and Find Full Text PDF

CD8 T cells responding to chronic infections or tumors acquire an 'exhausted' state associated with elevated expression of inhibitory receptors, including PD-1, and impaired cytokine production. Exhausted T cells are continuously replenished by T cells with precursor characteristics that self-renew and depend on the transcription factor TCF1; however, their developmental requirements are poorly understood. In the present study, we demonstrate that high antigen load promoted the differentiation of precursor T cells, which acquired hallmarks of exhaustion within days of infection, whereas early effector cells retained polyfunctional features.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have discovered that a specific transcription factor, IRF4, is expressed by a subset of CD4+ Tregs in tumors, contributing to their strong immunosuppressive abilities.
  • IRF4+ Tregs exhibited higher levels of suppressive molecules and were associated with T cell exhaustion in non-small-cell lung cancer cases.
  • Deleting the Irf4 gene in Tregs led to slowed tumor growth in mice, suggesting that targeting this pathway could improve cancer treatment strategies across various tumor types.
View Article and Find Full Text PDF

Adipose tissue is an energy store and a dynamic endocrine organ. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes.

View Article and Find Full Text PDF

Differentiation and homeostasis of Foxp3 regulatory T (Treg) cells are strictly controlled by T-cell receptor (TCR) signals; however, molecular mechanisms that govern these processes are incompletely understood. Here we show that Bach2 is an important regulator of Treg cell differentiation and homeostasis downstream of TCR signaling. Bach2 prevents premature differentiation of fully suppressive effector Treg (eTreg) cells, limits IL-10 production and is required for the development of peripherally induced Treg (pTreg) cells in the gastrointestinal tract.

View Article and Find Full Text PDF

Foxp3 regulatory T cells (T cells) are crucial for the maintenance of immune homeostasis both in lymphoid tissues and in non-lymphoid tissues. Here we demonstrate that the ability of intestinal T cells to constrain microbiota-dependent interleukin (IL)-17-producing helper T cell (T17 cell) and immunoglobulin A responses critically required expression of the transcription factor c-Maf. The terminal differentiation and function of several intestinal T cell populations, including RORγt T cells and follicular regulatory T cells, were c-Maf dependent.

View Article and Find Full Text PDF

Foxp3 regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS.

View Article and Find Full Text PDF

A wide array of chemokine receptors, including CCR2, are known to control Treg migration. Here, we report that CCR2 regulates Tregs beyond chemotaxis. We found that CCR2 deficiency reduced CD25 expression by FoxP3 Treg cells.

View Article and Find Full Text PDF

Cytokines play an integral role in shaping innate and adaptive immune responses. Members of the interleukin (IL)-1 family regulate a plethora of immune-cell-mediated processes, which include pathogen defense and tissue homeostasis. Notably, the IL-1 family cytokine IL-33 promotes adaptive and innate type 2 immune responses, confers viral protection and facilitates glucose metabolism and tissue repair.

View Article and Find Full Text PDF

After exiting the thymus, Foxp3 regulatory T (Treg) cells undergo further differentiation in the periphery, resulting in the generation of mature, fully suppressive effector (e)Treg cells in a process dependent on TCR signaling and the transcription factor IRF4. Here, we show that tumor necrosis factor receptor superfamily (TNFRSF) signaling plays a crucial role in the development and maintenance of eTreg cells. TNFRSF signaling activated the NF-κB transcription factor RelA, which was required to maintain eTreg cells in lymphoid and non-lymphoid tissues, including RORγt Treg cells in the small intestine.

View Article and Find Full Text PDF

Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis.

View Article and Find Full Text PDF

The physiological role of the pro-survival BCL-2 family member A1 has been debated for a long time. Strong mRNA induction in T cells on T cell receptor (TCR)-engagement suggested a major role of A1 in the survival of activated T cells. However, the investigation of the physiological roles of A1 was complicated by the quadruplication of the A1 gene locus in mice, making A1 gene targeting very difficult.

View Article and Find Full Text PDF