Oligodendrocyte precursor cells (OPCs) differentiate during postnatal development into myelin-forming oligodendrocytes, in a process distinguished by substantial changes in morphology and the onset of myelin gene expression. A mammalian-specific CNS myelin gene, tmem10, also called Opalin, encodes a type 1 transmembrane protein that is highly upregulated during early stages of OPC differentiation; however, a function for TMEM10 has not yet been identified. Here, consistent with previous studies, we detect TMEM10 protein in mouse brain beginning at ~P10 and show that protein levels continue to increase as oligodendrocytes differentiate and myelinate axons in vivo.
View Article and Find Full Text PDFClinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines.
View Article and Find Full Text PDFBackground: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment.
Results: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively.
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) demyelination and axonal degeneration. Although the cause of MS is still unknown, it is widely accepted that novel drug targets need to focus on both decreasing inflammation and promoting CNS repair. In MS and experimental autoimmune encephalomyelitis, non-coding small microRNAs (miRNAs) are dysregulated in the immune system and CNS.
View Article and Find Full Text PDFTo understand the molecular anatomy of myelin membranes, we performed a large-scale, liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS)-based lipidome and proteome screen on freshly purified human and murine myelin fractions. We identified more than 700 lipid moieties and above 1,000 proteins in the two species, including 284 common lipids and 257 common proteins. This study establishes the first comprehensive map of myelin membrane components in human and mice.
View Article and Find Full Text PDFClassical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths.
View Article and Find Full Text PDFCerebrospinal fluid samples collected from children during initial presentation of central nervous system inflammation, who may or may not subsequently be diagnosed as having multiple sclerosis (MS), were subjected to large-scale proteomics screening. Unexpectedly, major compact myelin membrane proteins typically implicated in MS were not detected. However, multiple molecules that localize to the node of Ranvier and the surrounding axoglial apparatus membrane were implicated, indicating perturbed axon-glial interactions in those children destined for diagnosis of MS.
View Article and Find Full Text PDFMicroRNAs (miRs) regulate diverse molecular and cellular processes including oligodendrocyte (OL) precursor cell (OPC) proliferation and differentiation in rodents. However, the role of miRs in human OPCs is poorly understood. To identify miRs that may regulate these processes in humans, we isolated OL lineage cells from human white matter and analyzed their miR profile.
View Article and Find Full Text PDFMegalencephalic leukoencephalopathy with subcortical cysts (MLC, MIM# 604004) is an autosomal recessive inherited disease mostly resulting from MLC1 mutations. In this study, we finished the functional analysis of MLC1 mutations identified recently in Chinese patients, including five newly described missense mutations (R22Q, A32V, G73E, A275T, Y278H), one known nonsense mutation (Y198X), and two known missense mutations (S69L, T118M). We found MLC1(wt) was localized to the cell periphery, whereas mutant R22Q, A32V, G73E, S69L and T118M were trapped in the lumen of endoplasmic reticulum (ER) when we transfected the wild-type and mutant MLC1 in U373MG cells.
View Article and Find Full Text PDFA large number of genetic diseases have been associated with truncated or misfolded membrane proteins trapped in the endoplasmic reticulum (ER). In the ER, they activate the unfolded protein response, which can trigger cell death. Hence, a better understanding of protein misfolding features might help in developing novel therapies.
View Article and Find Full Text PDFCompact myelin, the paranode, and the juxtaparanode are discrete domains that are formed on myelinated axons. In humans, neurological disorders associated with loss of myelin, including Multiple Sclerosis, often also result in disassembly of the node of Ranvier. Despite the importance of these domains in the proper functioning of the CNS, their molecular composition and assembly mechanism remains largely unknown.
View Article and Find Full Text PDFDuring vertebrate brain development, axons are enwrapped by myelin, an insulating membrane produced by oligodendrocytes. Neuron-derived signaling molecules are temporally and spatially required to coordinate oligodendrocyte differentiation. In this study, we show that neurons regulate myelin membrane trafficking in oligodendrocytes.
View Article and Find Full Text PDF