In mice, embryonic dermal lymphatic development is well understood and used to study gene functions in lymphangiogenesis. Notch signaling is an evolutionarily conserved pathway that modulates cell fate decisions, which has been shown to both inhibit and promote dermal lymphangiogenesis. Here, we demonstrate distinct roles for Notch4 signaling versus canonical Notch signaling in embryonic dermal lymphangiogenesis.
View Article and Find Full Text PDFObjectives: Chylothorax following cardiac surgery for congenital cardiac anomalies is a complication associated with severe morbidities and mortality. We hypothesize that there are intrinsic defects in the lymphatics of congenital cardiac patients.
Methods: Postsurgical chylothorax lymphatic endothelial cells (pcLECs) (n = 10) were isolated from the chylous fluid from congenital cardiac defect patients, and characterized by fluorescent-activated cell sorting, immunofluorescent staining, and quantitative RT-PCR.
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) plays crucial roles in cardiac homeostasis. Adult cardiomyocyte specific overexpression of eNOS confers protection against myocardial-reperfusion injury. However, the global effects of NO overexpression in developing cardiovascular system is still unclear.
View Article and Find Full Text PDFResident tissue myeloid cells play a role in many aspects of physiology including development of the vascular systems. In the blood vasculature, myeloid cells use VEGFC to promote angiogenesis and can use Wnt ligands to control vascular branching and to promote vascular regression. Here we show that myeloid cells also regulate development of the dermal lymphatic vasculature using Wnt ligands.
View Article and Find Full Text PDFNitric oxide (NO) is a known modulator of angiogenesis. The NONOate subfamily of NO donors has long been used in experimental and clinical studies to promote angiogenesis. However, no studies have been conducted yet to compare the angiogenesis potential of these NO donors in respect to their pattern of NO release.
View Article and Find Full Text PDFThe migration and proliferation of endothelial cells affect the process of angiogenesis or the formation of blood vessels. Endothelial cells interact with each other to form ring-like structures in monolayers and tubular structures in matrigels. However, the transit phase between the individual endothelial cells and fully formed tubular structures is yet to be established.
View Article and Find Full Text PDFAngiogenesis is a physiological process involving the growth of blood vessel in response to specific stimuli. The present study shows that limited microgravity treatments induce angiogenesis by activating macrovascular endothelial cells. Inhibition of nitric oxide production using pharmacological inhibitors and inducible nitric oxide synthase (iNOS) small interfering ribo nucleic acid (siRNA) abrogated microgravity induced nitric oxide production in macrovascular cells.
View Article and Find Full Text PDFHypoxia induces barrier dysfunctions in endothelial cells. Nitric oxide is an autacoid signalling molecule that confers protection against hypoxia-mediated barrier dysfunctions. Dyn-2 (dynamin-2), a large GTPase and a positive modulator of eNOS (endothelial nitric oxide synthase), plays an important role in maintaining vascular homeostasis.
View Article and Find Full Text PDFThis study aims to investigate the role of shear stress in cellular remodeling and angiogenesis with relation to nitric oxide (NO). We observed a 2-fold increase in endothelial cell (EC) migration in relation to actin re-arrangements under 15 dyne/cm(2) shear stress. Blocking NO production inhibited the migration and ring formation of ECs by 6-fold and 5-fold, respectively under shear stress.
View Article and Find Full Text PDFMicrogravity causes endothelium dysfunctions and vascular endothelium remodeling in astronauts returning from space flight. Cardiovascular deconditioning occurs as a consequence of an adaptive response to microgravity partially due to the effects exerted at cellular level. Directional migration of endothelial cell which are central in maintaining the structural integrity of vascular walls is regulated by chemotactic, haptotactic, and mechanotactic stimuli which are essential for vasculogenesis.
View Article and Find Full Text PDFWnt signaling is involved in developmental processes, cell proliferation, and cell migration. Secreted frizzled-related protein 4 (sFRP4) has been demonstrated to be a Wnt antagonist; however, its effects on endothelial cell migration and angiogenesis have not yet been reported. Using various in vitro assays, we show that sFRP4 inhibits endothelial cell migration and the development of sprouts and pseudopodia as well as disrupts the stability of endothelial rings in addition to inhibiting proliferation.
View Article and Find Full Text PDFBackground And Purpose: Nitric oxide (NO) promotes angiogenesis by activating endothelial cells. Thalidomide arrests angiogenesis by interacting with the NO pathway, but its putative targets are not known. Here, we have attempted to identify these targets.
View Article and Find Full Text PDFCadmium, a ubiquitous heavy metal, interferes with endothelial functions and angiogenesis. Bradykinin is a Ca-mobilizing soluble peptide that acts via nitric oxide to promote vasodilation and capillary permeability. The objective of the present study was to explore the Cd implications in bradykinin-dependent endothelial functions.
View Article and Find Full Text PDFCadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L.
View Article and Find Full Text PDFHepatic stellate cells are liver-specific pericytes and exist in close proximity with endothelial cells. The activation of liver pericytes is intrinsic to liver pathogenesis, and leads to endothelial dysfunction, including the low bioavailability of nitric oxide (NO). However, the role of nitric oxide in pericyte-endothelium cross-talk has not yet been elucidated.
View Article and Find Full Text PDF