Publications by authors named "Ajit Mahadev Patil"

Background: The crucial role of type I interferon (IFN-I, IFN-α/β) is well known to control central nervous system (CNS) neuroinflammation caused by neurotrophic flaviviruses such as Japanese encephalitis virus (JEV) and West Nile virus. However, an in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated.

Methods: Viral dissemination, tissue tropism, and cytokine production were examined in IFN-I signal-competent and -incompetent mice after JEV inoculation in tissues distal from the CNS such as the footpad.

View Article and Find Full Text PDF

The importance of TLR2 and TLR9 in the recognition of infection with herpes simplex virus (HSV) and HSV-caused diseases has been described, but some discrepancies remain concerning the benefits of these responses. Moreover, the impact of TLR2/9 on innate and adaptive immune responses within relevant mucosal tissues has not been elucidated using natural mucosal infection model of HSV. Here, we demonstrate that dual TLR2/9 recognition is essential to provide resistance against mucosal infection with HSV an intravaginal route.

View Article and Find Full Text PDF

Possible risk mediators in primary dengue virus (DenV) infection that favor secondary DenV infection to life-threatening dengue hemorrhagic fever (DHF) and shock syndrome (DSS) via antibody-dependent enhancement (ADE) have not yet been described. Here, DenV infection enhanced the expression of inflammatory mediators and activation molecules in dendritic cells (DCs) through TLR2/MyD88 pathway. TLR2 appeared to facilitate DenV infection in DCs that were less permissive than macrophages for viral replication.

View Article and Find Full Text PDF

Japanese encephalitis (JE) is neuroinflammation characterized by uncontrolled infiltration of peripheral leukocytes into the central nervous system (CNS). We previously demonstrated exacerbation of JE following CD11c dendritic cell (DC) ablation in CD11c-DTR transgenic mice. Moreover, CD11c DC ablation led to abnormal differentiation of CD11bLy-6C monocytes and enhanced permeability of the blood-brain barrier (BBB), resulting in promoting the progression of JE.

View Article and Find Full Text PDF

Japanese encephalitis (JE), characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV), is becoming a leading cause of viral encephalitis due to rapid changes in climate and demography. The blood-brain barrier (BBB) plays an important role in restricting neuroinvasion of peripheral leukocytes and virus, thereby regulating the progression of viral encephalitis. In this study, we explored the role of CD11c(hi) dendritic cells (DCs) in regulating BBB integrity and JE progression using a conditional depletion model of CD11c(hi) DCs.

View Article and Find Full Text PDF

Background: CCR5 is a CC chemokine receptor involved in the migration of effector leukocytes including macrophages, NK, and T cells into inflamed tissues. Also, the role of CCR5 in CD4(+)Foxp3(+) regulatory T cell (Treg) homing has recently begun to grab attention. Japanese encephalitis (JE) is defined as severe neuroinflammation of the central nervous system (CNS) following infection with mosquito-borne flavivirus JE virus.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a re-emerging zoonotic flavivirus that poses an increasing threat to global health and welfare due to rapid changes in climate and demography. Although the CCR2-CCL2 axis plays an important role in trafficking CD11b(+) Ly-6C(hi) monocytes to regulate immunopathological diseases, little is known about their role in monocyte trafficking during viral encephalitis caused by JEV infection. Here, we explored the role of CCR2 and its ligand CCL2 in JE caused by JEV infection using CCR2- and CCL2-ablated murine models.

View Article and Find Full Text PDF

Background: Japanese encephalitis (JE), a leading cause of viral encephalitis, is characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV). Indoleamine 2,3-dioxygenase (IDO) has been identified as an enzyme associated with immunoregulatory function. Although the regulatory role of IDO in viral replication has been postulated, the in vivo role of IDO activity has not been fully addressed in neurotropic virus-caused encephalitis.

View Article and Find Full Text PDF

Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b(+)Ly-6C(hi) monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11c(hi)PDCA-1(int/lo) DCs without alteration in CD11c(int)PDCA-1(hi) plasmacytoid DC number, we found that CD11c(hi) DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b(+)Ly-6C(hi) monocytes and higher expression of CC chemokines.

View Article and Find Full Text PDF

Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2.

View Article and Find Full Text PDF

Background: Japanese encephalitis (JE), a neuroinflammation caused by zoonotic JE virus, is the major cause of viral encephalitis worldwide and poses an increasing threat to global health and welfare. To date, however, there has been no report describing the regulation of JE progression using immunomodulatory tools for developing therapeutic strategies. We tested whether blocking the 4-1BB signaling pathway would regulate JE progression using murine JE model.

View Article and Find Full Text PDF

T-cell exhaustion has become an important issue in chronic infection because exhausted antigen-specific T cells show impaired abilities to eradicate persistently infected pathogens and produce effector cytokines, such as IFN-γ and TNF-α. Thus, strategies to either restore endogenous exhausted T cell responses or provide functional T cells are needed for therapeutics of chronic infection. Despite promising developments using antibodies and cell immunotherapy, there have been no reported attempts to restore exhausted T cells using treatment with materials derived from natural resources.

View Article and Find Full Text PDF

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites.

View Article and Find Full Text PDF

Cross-presentation is the pathway by which exogenous antigens are routed for presentation by MHC class I molecules leading to activation of antiviral CD8(+) T-cell responses. However, there is little information describing the modulation of cross-presentation and the impact of pathogen-derived signals associated with Japanese encephalitis virus (JEV), which is one of the most common causes of encephalitis in humans. In this study, we demonstrate that JEV infection could suppress in vivo cross-presentation of soluble and cell-associated antigens, thereby generating weak CD8(+) T-cell responses to exogenous antigens, as evaluated by CFSE dilution of adoptively transferred CD8(+) T cells and in vivo CTL killing activity.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Ajit Mahadev Patil"

  • - Ajit Mahadev Patil's research primarily focuses on the immune mechanisms involved in viral infections, particularly Japanese encephalitis virus (JEV) and herpes simplex virus (HSV), exploring how type I interferon (IFN-I) signaling and other immune pathways influence the progression of neuroinflammation and viral dissemination.
  • - His studies highlight the roles of specific immune cells, such as monocytes and dendritic cells, in modulating inflammation and their interactions with cytokines, which are crucial for maintaining the integrity of the blood-brain barrier and preventing severe disease outcomes in viral encephalitis.
  • - Notable findings include the essential role of dual TLR2/9 recognition in the immune response against HSV, and the regulatory effects of various chemokines and cell signaling pathways in influencing the immune responses during JEV infection, ultimately aiding in the understanding and potential targeting of immunopathological conditions.

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf6glkh4hd7aog2ammj697anchll2g05v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once