Publications by authors named "Ajiro K"

Histone H2B phosphorylation at Serine 14 (phosS14) has been proposed as an epigenetic marker of apoptotic cells, whereas acetylation at the adjacent Lysine 15 (acK15) is a property of non-dying cells. We investigated the relationship and the potential regulatory mechanisms between these two epigenetic histone modifications and internucleosomal DNA degradation during apoptosis. Using rat primary thymocytes induced to undergo apoptosis with glucocorticoids we found that H2B phosphorylated at Ser14 was associated with soluble, cleaved DNA in apoptotic nuclei.

View Article and Find Full Text PDF

Calcium ions have been implicated in apoptosis for many years, however the precise role of this ion in the cell death process remains incomplete. We have extensively examined the role of Ca(2+) on nuclear degradation in vitro using highly purified nuclei isolated from non-apoptotic rat thymocytes. We show that these nuclei are devoid of CAD (caspase-activated DNase), and DNA degradation occurs independent of caspase activity.

View Article and Find Full Text PDF

When cells are treated with cytotoxic agents, they enter apoptosis asynchronously to yield cells at various stages of cellular deterioration. This mixture makes it difficult to study the biochemical pathways leading to cell death. We have fractionated apoptotic mammalian cells in a simple discontinuous bovine serum albumin (BSA) density gradient centrifugation into five layers, each containing cells at different stages of apoptosis, (1) nonapoptotic, (2) undergoing apoptosis, and (3) mature apoptotic cells, as judged by light and electron microscopy of chromatin condensation and by the extent of DNA fragmentation.

View Article and Find Full Text PDF

DNA in eukaryotic cells is associated with histone proteins; hence, hallmark properties of apoptosis, such as chromatin condensation, may be regulated by posttranslational histone modifications. Here we report that phosphorylation of histone H2B at serine 14 (S14) correlates with cells undergoing programmed cell death in vertebrates. We identify a 34 kDa apoptosis-induced H2B kinase as caspase-cleaved Mst1 (mammalian sterile twenty) kinase.

View Article and Find Full Text PDF

1. Increased interest in fish oil led us to examine their metabolic effects in spontaneously hypertensive rats, which have been reported to have glucose intolerance. 2.

View Article and Find Full Text PDF

Histone phosphorylation was investigated in several mammalian cells undergoing apoptosis (human HL-60 and HeLa, mouse FM3A and N18 cells, and rat thymocytes). Among the four nucleosomal core histones (H2A, H2B, H3, and H4), H2B, which is not usually phosphorylated in quiescent or growing cells, was found to be phosphorylated after treatment with various apoptotic inducers. The H2B was phosphorylated around the time when nucleosomal DNA fragmentation was initiated and, like this fragmentation, was completely blocked with Z-Asp-CH(2)-DCB, an inhibitor of ICE or ICE-like caspase.

View Article and Find Full Text PDF

Histone H3 (H3) phosphorylation at Ser(10) occurs during mitosis in eukaryotes and was recently shown to play an important role in chromosome condensation in Tetrahymena. When producing monoclonal antibodies that recognize glial fibrillary acidic protein phosphorylation at Thr(7), we obtained some monoclonal antibodies that cross-reacted with early mitotic chromosomes. They reacted with 15-kDa phosphoprotein specifically in mitotic cell lysate.

View Article and Find Full Text PDF

At the nonpermissive temperature (39 degrees C), chromosomes remain condensed in a temperature-sensitive cell mutant (tsTM13) arrested in the late stage of mitosis. Highly increased activity of histone H1 kinase, hyperphosphorylation of histone H1, and mitosis-specific histone H3 phosphorylation are maintained, even in telophase. In the present study, the defect of chromosome decondensation in tsTM13 cells was found to be partially normalized by a tyrosine phosphatase inhibitor, vanadate, with induction of chromosome decondensation and the formation of multinucleated cells.

View Article and Find Full Text PDF

Effects of okadaic acid (OA), a protein phosphatase inhibitor, on chromatin structure and phosphorylation of histones were examined using HeLa and N18 cells. The chromatin condensation in HeLa cells was mild and resemble prometaphase nuclei, while the condensation in N18 cells was extensive and chromatin became a compact body. H2A in HeLa cells was extensively and consistently phosphorylated at the same site throughout the cell cycle, and H3 was demonstrated to be phosphorylated at the mitosis-specific site Ser10.

View Article and Find Full Text PDF

To analyze the mechanism by which histone H3 phosphorylation occurs specifically during mitosis, the effect of H1 on mitosis-specific H3 phosphorylation (Ser-10) was investigated in nucleosomes. H1 interaction with H1-depleted nucleosomes suppressed H3 phosphorylation including Ser-10 by approximately 50%. However, H1 interaction with DNA-free histone octamers failed to suppress H3 phosphorylation.

View Article and Find Full Text PDF

A temperature-sensitive CHO-K1 cell mutant, tsTM13, exhibited a delayed cell cycle progression from metaphase to telophase at a nonpermissive temperature and was finally arrested from anaphase to telophase. Metaphase chromosomes were overcondensed and chromosome disjunction in anaphase was uncoordinated. In telophase, sister chromatids were segregated and cytokinesis was completed, but chromosome structure remained in a condensed state and the spindle was not deconstructed.

View Article and Find Full Text PDF

The Mr = 38,300 polypeptide of the purified recombinant rat DNA polymerase beta served as an excellent substrate for protein kinase C (PKC) in vitro but not for the catalytic subunit of cAMP-dependent protein kinase. The phosphorylation by PKC resulted in inactivation of DNA polymerase beta activity, and recovery was achieved by dephosphorylation with alkaline phosphatase. Since the phosphorylated DNA polymerase beta was retained with use of a single-stranded DNA-cellulose column, inactivation might occur at a site different from that for the DNA binding.

View Article and Find Full Text PDF

A mechanism of mitosis-specific enhancement of histone H3 phosphorylation was analyzed in vitro in terms of nucleosome structure. The incorporation of [32P]phosphate into DNA-bound H3 was approximately 5-7 times higher than in DNA-free H3 using the catalytic subunit of cAMP-dependent protein kinase. The two major N-terminal serine sites, including the mitosis-specific site (Ser10) and Ser28, were extensively phosphorylated in the DNA-bound forms.

View Article and Find Full Text PDF

At the initial phase of cell differentiation in mouse neuroblastoma (N18) induced by dibutyrylcyclic AMP (dbcAMP), an additional site of histone H1 was extensively phosphorylated. Forskolin and various phosphodiesterase inhibitors also induced both cell differentiation and H1 phosphorylation at the identical site. The phosphorylation preferentially occurred in a single H1 subtype (H1c) among the five (H1a-e) fractionated by high performance liquid chromatography.

View Article and Find Full Text PDF

RNA blot hybridization analysis revealed that the steady-state level of DNA polymerase beta-mRNA in mouse neuroblastoma N18TG2 cells was approximately five-fold higher than that in NIH/3T3 cells. In order to examine the function of DNA polymerase beta-gene silencers in these two cell lines, we employed a chloramphenicol acetyltransferase (CAT)-transient expression assay using the CAT plasmids containing the silencers linked to various promoter-enhancers. In NIH/3T3 cells, DNA polymerase beta-gene silencers effectively repressed the function of its own promoter and those of several other heterologous promoter-enhancers.

View Article and Find Full Text PDF

Previously we have found that histone H1 and H3 of tsBN2 cells showing premature chromosome condensation (PCC) at nonpermissive temperature (40.5 degrees C) were phosphorylated extensively as in mitotic cells (Ajiro, K., Nishimoto, T.

View Article and Find Full Text PDF

A critical analysis of histone expression was performed on the four interspecific and the two intraspecific reconstituted cells formed between karyoplast from mouse B16 cells and the cytoplast from rat cells (L6TG.CAPr) or mouse cells (B82.CAPr).

View Article and Find Full Text PDF

The induction of premature chromosome condensation (PCC) in tsBN2 cells, a temperature-sensitive (ts) mutant of BHK21/13 which shows PCC at the non-permissive temperature, was almost completely inhibited by 40 microM W-7, an antagonist of calmodulin. The mitotic phosphorylation of histone H1 and H3 was also inhibited by W-7. W-5, a chlorine-deficient analogue of W-7 and which interacts weakly with calmodulin, did not inhibit the induction of PCC, even at a dose of 80 microM.

View Article and Find Full Text PDF

Two distinct patterns of mitochondrial DNA (mtDNA) segregation were found in different mouse-rat hybrid cell lines. On mouse-rat hybrid cell line, H2, retained complete sets of chromosomes and mtDNAs of both mouse and rat. Even after cultivation for about one year after cloning, the H2 cell population still retained both parental mtDNAs.

View Article and Find Full Text PDF

The histone phosphorylations of temperature-sensitive mutant cells (tsBN2) were investigated during the induction of premature chromosome condensation (PCC). At the permissive temperature (33.5 degrees C), the histones of the cells were phosphorylated typically as in any other mammalian cell.

View Article and Find Full Text PDF

Five different clones of somatic hybrid cell lines between mouse and rat cells were examined for the expression of species-specific histone H1 and H2B subtypes. It was found that one hybrid (140-3) contained only mouse specific histones and the other four clones had both mouse and rat specific histones in various ratios. In three cases (141-B, NBr10A, NBr20A), the relative amount of mouse and rat specific histones was correlated with the karyotype of the hybrids.

View Article and Find Full Text PDF