The development of the field of soft robotics has led to the exploration of novel techniques to manufacture soft actuators, which provide distinct advantages for wearable assistive robotics. One subset of these soft pneumatic actuators is conventionally developed from silicone, fabrics, and thermoplastic polyurethane (TPU). Each of these materials in isolation possesses limitations of low-stress capacity, low-design complexity, and high-input pressure requirements, respectively.
View Article and Find Full Text PDFThe evolution of wearable technologies has led to the development of novel types of sensors customized for a wide range of applications. Wearable sensors need to possess a low form factor and be ergonomic, causing minimal impediment of the user's natural movement. Various principles have been explored to meet these requirements, ranging from optical, magnetic, resistive flex sensing to 3D printed sensors and liquid metals such as those using eutectic gallium-indium.
View Article and Find Full Text PDF