Publications by authors named "Ajeesh Koshy Cherian"

After publication of this paper, the authors determined that the "Acknowledgments" section was omitted. Below is the "Acknowledgments" statement.

View Article and Find Full Text PDF

Rationale: Loss of basal forebrain cholinergic neurons contributes to the severity of the cognitive decline in age-related dementia and, in patients with Parkinson's disease (PD), to impairments in gait and balance and the resulting risks for falls. Contrasting with the extensive evidence indicating an essential role of cholinergic activity in mediating cognitive, specifically attentional abilities, treatment with conventional acetylcholinesterase inhibitors (AChEIs) has not fulfilled the promise of efficacy of pro-cholinergic treatments.

Objectives: Here, we investigated the potential usefulness of a muscarinic M1 positive allosteric modulator (PAM) in an animal model of cholinergic loss-induced impairments in attentional performance.

View Article and Find Full Text PDF

Previous research emphasized the impact of traumatic brain injury on cholinergic systems and associated cognitive functions. Here we addressed the converse question: Because of the available evidence indicating cognitive and neuronal vulnerabilities in humans expressing low-capacity cholinergic systems or with declining cholinergic systems, do injuries cause more severe cognitive decline in such subjects, and what cholinergic mechanisms contribute to such vulnerability? Using mice heterozygous for the choline transporter (CHT+/- mice) as a model for a limited cholinergic capacity, we investigated the cognitive and neuronal consequences of repeated, mild concussion injuries (rmCc). After five rmCc, and compared with wild type (WT) mice, CHT+/- mice exhibited severe and lasting impairments in sustained attention performance, consistent with effects of cholinergic losses on attention.

View Article and Find Full Text PDF

Rationale: Falls in patients with Parkinson's disease (PD) are associated with cognitive, specifically attentional impairments and with losses in cholinergic projection systems. We previously established an animal model of the combined basal forebrain cholinergic-striatal dopaminergic losses of PD fallers (Dual Lesioned, DL, rats) and demonstrated that treating DL rats with an acetylcholinesterase inhibitor (AChEI), donepezil, together with a 5HT receptor antagonist, idalopirdine, reduced fall frequency and improved associated aspects of the performance of DL rats traversing rotating rods.

Objectives: Here, we employed a longer and more taxing rotating beam apparatus to determine the potential therapeutic efficacy of idalopirdine when combined with the pseudo-irreversible, and thus relatively long-acting, AChE- and butyrylcholinesterase- (BuChE) inhibitor rivastigmine.

View Article and Find Full Text PDF

The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells.

View Article and Find Full Text PDF

Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013).

View Article and Find Full Text PDF

The basal forebrain cholinergic projection system to the cortex mediates essential aspects of visual attention performance, including the detection of cues and the response to performance challenges (top-down control of attention). Higher levels of top-down control are mediated via elevated levels of cholinergic neuromodulation. The neuronal choline transporter (CHT) strongly influences the synthesis and release of acetylcholine (ACh).

View Article and Find Full Text PDF

Kynurenic acid (KYNA) is a tryptophan metabolite that acts in the brain as an endogenous antagonist at multiple receptors, including glutamate and α7 nicotinic acetylcholine receptors. Increased levels of KYNA have been demonstrated in the brain of patients with a range of neurocognitive disorders, including schizophrenia, and are hypothesized to contribute to cognitive symptoms. Reducing KYNA levels by administering inhibitors of enzymes of the kynurenine pathway, particularly kynurenine aminotransferase II (KAT II), has been proposed as a treatment for such cognitive impairments.

View Article and Find Full Text PDF

Nerve cell metabolic activity is monitored in multiple brain regions, including the hypothalamus and hindbrain dorsal vagal complex (DVC), but it is unclear if individual metabolosensory loci operate autonomously or interact to coordinate central nervous system (CNS) reactivity to energy imbalance. This research addressed the hypothesis that hypoglycemia-associated DVC lactoprivation stimulates hypothalamic AMPK activity and metabolic neurotransmitter expression. As DVC catecholaminergic neurons express biomarkers for metabolic monitoring, we investigated whether these cells are a source of lactate deficit signaling to the hypothalamus.

View Article and Find Full Text PDF

The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied.

View Article and Find Full Text PDF

Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal.

View Article and Find Full Text PDF

This study investigated the hypothesis that estrogen controls hindbrain AMP-activated protein kinase (AMPK) activity and regulation of blood glucose, counterregulatory hormone secretion, and hypothalamic nerve cell transcriptional status. Dorsal vagal complex A2 noradrenergic neurons were laser microdissected from estradiol benzoate (E)- or oil (O)-implanted ovariectomized female rats after caudal fourth ventricular (CV4) delivery of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR), for Western blot analysis. E advanced AICAR-induced increases in A2 phospho-AMPK (pAMPK) expression and in blood glucose levels and was required for augmentation of Fos, estrogen receptor-α (ERα), monocarboxylate transporter-2, and glucose transporter-3 protein in A2 neurons and enhancement of corticosterone secretion by this treatment paradigm.

View Article and Find Full Text PDF

CNS neurons exhibit sustained activation by recurring hypoglycemia in the presence of estrogen. We investigated the impact of estradiol on fuel uptake and detection of energy imbalance by hindbrain A2 metabolosensory neurons during acute vs. chronic hypoglycemia.

View Article and Find Full Text PDF

Advances in mouse genetic technology have spurred increasing interest in the development of cognitive tasks for mice. Here, we describe and discuss the modifications necessary to adapt a task for the assessment of sustained attention performance for use in mice, including for taxing the top-down control of such performance. The validity of the Sustained Attention Task (SAT), including the distractor version (dSAT), has previously been demonstrated in rats and humans.

View Article and Find Full Text PDF

Cellular metabolic stasis is monitored in discrete brain sites, including the dorsal vagal complex (DVC), where A2 noradrenergic neurons perform this sensory function. Single-cell qPCR and high-sensitivity immunoblotting were used to determine if A2 neurons adapt to chronic hypoglycemia by increasing substrate fuel transporter expression, and whether such adjustments coincide with decreased cellular energy instability during this systemic metabolic stress. Tyrosine hydroxylase-immunolabeled neurons were laser-microdissected from the caudal DVC 2 hr after single or serial neutral protamine Hagedorn insulin (NPH) dosing.

View Article and Find Full Text PDF

It has been reported that adrenalectomy (ADX) and the potent type II glucocorticoid receptor agonist, dexamethasone, exert opposing effects on glucose utilization in specific brain regions, including the hypothalamus. The present study investigated the hypothesis that ADX alters neuronal substrate fuel transporter mRNA levels in characterized hypothalamic and hindbrain metabolic monitoring structures, and adjustments in these gene profiles are correlated with modified transcription of genes encoding the glucose sensor, glucokinase (GCK), and the energy-dependent, inwardly-rectifying potassium channel, K(ATP). The lateral hypothalamic area (LHA), ventromedial hypothalamic nucleus (VMN), and dorsal vagal complex (DVC) were microdissected from ADX and sham-operated male rats 2 h after neutral protamine Hagedorn insulin or vehicle injection, and evaluated by quantitative real-time RT-PCR for neuronal glucose (GLUT3, GLUT4), monocarboxylate (MCT2) transporter, GCK, and sulfonylurea receptor-1 (SUR1) mRNA content.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: