One possible pathological mechanism underlying hypertension and its related health consequences is dysfunction of the circadian system-a network of coupled circadian clocks that generates and orchestrates rhythms of ≈24 h in behavior and physiology. To better understand the role of circadian function during the development of hypertension, circadian regulation of motor activity is investigated in spontaneously hypertensive rats (SHRs) before the onset of hypertension and in their age-matched controls-Wistar Kyoto rats (WKYs). Two complementary properties in locomotor activity fluctuations are examined to assessthe multiscale regulatory function of the circadian control network: 1) rhythmicity at ≈24 h and 2) fractal patterns-similar temporal correlation at different time scales (≈0.
View Article and Find Full Text PDFBaroreflex sensitivity (BRS) is an important function of the nervous system and essential for maintaining blood pressure levels in the physiological range. In hypertension, BRS is decreased both in man and animals. Although increased sympathetic activity is thought to be the main cause of decreased BRS, hence the development of hypertension, the BRS is regulated by both sympathetic (SNS) and parasympathetic (PNS) nervous system.
View Article and Find Full Text PDFHuman postmortem studies as well as experimental animal studies indicate profound changes in neuropeptide expression in the suprachiasmatic nucleus (SCN) in several pathological conditions including hypertension. In addition, animal experimental observations show that the SCN peptides, vasopressin (AVP) and vasoactive intestinal peptide (VIP) are essential for adequate rhythmicity. These data prompted us to investigate whether changes in these neuronal populations could be the cause or consequence of hypertension.
View Article and Find Full Text PDFThe present study investigates the circadian behavior of spontaneously hypertensive rats (SHRs) during the pre-hypertensive and hypertensive stage, with the aim to gain insight into whether observed changes in the functionality of suprachiasmatic nucleus (SCN) in the hypertensive state are cause or consequence of hypertension. Four types of animals were used in this study: (1) SHRs which develop hypertension genetically; (2) their normotensive controls, Wistar Kyoto rats (WKYs); (3) Wistar rats whereby hypertension was surgically induced (2 Kidney 1 Clamp (2K1C) method); and (4) sham-operated control Wistar rats. Period length and activity levels and amplitude changes of locomotor and wheel running activity were determined, in constant conditions, as a measure of the functionality of the SCN.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2004
The present experiment investigated the potentially ameliorative effect of exposure to light in the dark phase of an 12:12 h daily lighting schedule (12L/12D cycle) on behavioral despair, an animal model of depression based on two forced swim tests separated by 24 h. Experimental groups of female Wistar rats were maintained on the 12L/12D cycle except for a single exposure to 12 h of light treatment in the dark phase of the 12L/12D cycle. Control animals were treated similarly except for light treatment.
View Article and Find Full Text PDFThe suprachiasmatic nucleus (SCN) is involved in regulating many biological rhythms. Several lines of research implicate the SCN in affective behavior. The SCN is directly involved in regulating the daily rhythms of the hypothalamo-pituitary-adrenal (HPA) axis hormones involved in stress.
View Article and Find Full Text PDFHere, we present a neuroendocrine concept to review the circularly interacting energy homeostasis system between brain and body. Body-brain interaction is circular because the brain immediately integrates an input to an output, and because part of this response may be that the brain modulates the sensitivity of this perception. First, we describe how the brain senses the body through neurons and blood-borne factors.
View Article and Find Full Text PDF