The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA.
View Article and Find Full Text PDFAntimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates.
View Article and Find Full Text PDFTetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs.
View Article and Find Full Text PDFThe absorption of carbon dioxide by the pure ionic liquids 1-ethyl-3-methylimidazolium acetate ([C(1)C(2)Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C(1)C(4)Im][OAc]) was studied experimentally from 303 to 343 K. As expected, the mole fraction of absorbed carbon dioxide is high (0.16 at 303 K and 5.
View Article and Find Full Text PDFThe solvation of glycine in two ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium acetate, [C(1)C(4)Im][OAc], and 1-butyl-3-methylimidazolium trifluoroacetate, [C(1)C(4)Im][TFA], was studied by a combination of experimental and theoretical methods. The solubility of glycine in both ILs was determined at 333.15 K to be (8.
View Article and Find Full Text PDFThe influence of the nature of two different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(1)C(4)Im][NTf(2)], on the catalytic hydrogenation of 1,3-cyclohexadiene with [Rh(COD)(PPh(3))(2)][NTf(2)] (COD = 1,5-cyclooctadiene) was studied. Initially, the effect of different concentrations of 1,3-cyclohexadiene on the molecular interactions and on the structure in two ionic liquids was investigated by NMR and by molecular dynamic simulations. It was found that in both ionic liquids 1,3-cyclohexadiene is solvated preferentially in the lipophilic regions.
View Article and Find Full Text PDFIonic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine.
View Article and Find Full Text PDFThe catalytic hydrogenation of 1,3-cyclohexadiene using [Rh(COD)(PPh(3))(2)]NTf(2) (COD = 1,5-cyclooctadiene) was performed in two ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(1)C(4)Im][NTf(2)]. It is observed that the reaction is twice as fast in [C(1)C(4)Im][NTf(2)] than in [C(1)C(1)C(4)Im][NTf(2)]. To explain the difference in reactivity, molecular interactions and the microscopic structure of ionic liquid +1,3-cyclohexadiene mixtures were studied by NMR and titration calorimetry experiments, and by molecular simulation in the liquid phase.
View Article and Find Full Text PDFOxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2010
It is difficult to imagine organic chemistry without organo-halogen compounds and the molecular halogens needed for their preparation. The halogens have very different reactivity, with iodine usually requiring some form of activation, while others are reactive and hazardous chemicals. To avoid their use, various modified reagents have been discovered (N-bromo- and N-chlorosuccinimide, Selectfluor.
View Article and Find Full Text PDFFluorous aryl and alkyl iodine(III) dichlorides of the formulas (R(fn)(CH(2))(3))(2)C(6)H(3)ICl(2) (R(fn) = CF(3)(CF(2))(n-1); n = 8 for 3,5-disubstituted and n = 6, 8, 10 for 2,4-disubstituted) and R(fn)CH(2)ICl(2) (n = 8, 10) are prepared in 71-98% yields by reactions of Cl(2) and the corresponding fluorous iodides. These are effective reagents for the conversions of cyclooctene to trans-1,2-dichlorocyclooctene, anisole to 4-chloro- and 2-chloroanisole, 4-tert-butylphenol to 2-chloro-4-tert-butylphenol, PhCOCH(2)COPh to PhCOCHClCOPh, and PhCOCH(3) to PhCOCH(2)Cl and PhCOCHCl(2) (CH(3)CN, rt to 40 degrees C, 100-64% conversions). The chlorinated products and fluorous iodide coproducts are easily separated by organic/fluorous liquid/liquid biphase workups.
View Article and Find Full Text PDF