Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution.
View Article and Find Full Text PDFEsophageal squamous cell carcinoma (ESCC) accounts for over 90% of all esophageal tumors. However, the molecular mechanism underlying ESCC development and prognosis remains unclear, and there are still no effective molecular biomarkers for diagnosing or predicting the clinical outcome of patients with ESCC. Here, we used bioinformatics analysis to identify potential biomarkers and therapeutic targets for ESCC.
View Article and Find Full Text PDFRadiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair.
View Article and Find Full Text PDFCervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity.
View Article and Find Full Text PDFEsophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread.
View Article and Find Full Text PDFThe growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent.
View Article and Find Full Text PDFObesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence.
View Article and Find Full Text PDFCancer is caused by a complex interaction of factors that interrupt the normal growth and division of cells. At the center of this process is the intricate relationship between DNA damage and the cellular mechanisms responsible for maintaining genomic stability. When DNA damage is not repaired, it can cause genetic mutations that contribute to the initiation and progression of cancer.
View Article and Find Full Text PDFEsophageal cancer (EC) remains a significant health challenge globally, with increasing incidence and high mortality rates. Despite advances in treatment, there remains a need for improved diagnostic methods and understanding of disease progression. This study addresses the significant challenges in the automatic classification of EC, particularly in distinguishing its primary subtypes: adenocarcinoma and squamous cell carcinoma, using histopathology images.
View Article and Find Full Text PDFCancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2024
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges.
View Article and Find Full Text PDFBreast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits.
View Article and Find Full Text PDFBackground: The benzophenanthridine Sanguinarine (Sng) is one of the most abundant root alkaloids with a long history of investigation and pharmaceutical applications. The cytotoxicity of Sng against various tumor cells is well-established; however, its antiproliferative and apoptotic potential against the cutaneous squamous cell carcinoma (cSCC) cells remains unknown. In the present study, we investigated the anti-cancer potential of Sng against cSCC cells and elucidated the underlying mechanisms relevant to the drug action.
View Article and Find Full Text PDFThe tumor microenvironment (TME) exerts a profound influence on the oncogenesis and progression of various cancers, notably those instigated by the human papillomavirus (HPV) and the Epstein-Barr virus (EBV). The etiology of HPV and EBV-associated malignancies is rooted in intricate interactions that intertwine viral infections, genetic predispositions, and distinct TME dynamics. These interactions foster a milieu that can either support or hinder tumorigenic progression.
View Article and Find Full Text PDFNeosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation.
View Article and Find Full Text PDFSignificant progress has been achieved in the realm of therapeutic interventions for multiple myeloma (MM), leading to transformative shifts in its clinical management. While conventional modalities such as surgery, radiotherapy, and chemotherapy have improved the clinical outcomes, the overarching challenge of effecting a comprehensive cure for patients afflicted with relapsed and refractory MM (RRMM) endures. Notably, adoptive cellular therapy, especially chimeric antigen receptor T-cell (CAR-T) therapy, has exhibited efficacy in patients with refractory or resistant B-cell malignancies and is now also being tested in patients with MM.
View Article and Find Full Text PDFCancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance.
View Article and Find Full Text PDFThe interaction of visual exploration and auditory processing is central to early cognitive development, supporting object discrimination, categorization, and word learning. Research has shown visual-auditory interactions to be complex, created from multiple processes and changing over multiple timescales. To better understand these interactions, we generalize a formal neural process model of early word learning to two studies examining how words impact 9- to 22-month-olds' attention to novelty.
View Article and Find Full Text PDFObesity and asthma are two common health issues that have shown increased prevalence in recent years and have become a significant socioeconomic burden worldwide. Obesity increases asthma incidence and severity. Obese asthmatic individuals often experience increased exacerbation rates, enhanced airway remodeling, and reduced response to standard corticosteroid therapy.
View Article and Find Full Text PDFMultiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties.
View Article and Find Full Text PDFBackground: Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates.
Objective: In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH.
Methods: Cell viability was measured using Cell counting Kit-8 (CCK8) assays.
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies.
View Article and Find Full Text PDFBackground: Telomeres are repetitive DNA sequences located at the ends of chromosomes, playing a vital role in maintaining chromosomal integrity and stability. Dysregulation of telomeres has been implicated in the development of various cancers, including non-small cell lung cancer (NSCLC), which is the most common type of lung cancer. Genetic variations within telomere maintenance genes may influence the risk of developing NSCLC.
View Article and Find Full Text PDF