Publications by authors named "Ajaykumar Vora"

Integration of the retrovirus linear DNA genome into the host chromosome is an essential step in the viral replication cycle, and is catalyzed by the viral integrase (IN). Evidence suggests that IN functions as a dimer that cleaves a dinucleotide from the 3' DNA blunt ends while a dimer of dimers (tetramer) promotes concerted integration of the two processed ends into opposite strands of a target DNA. However, it remains unclear why a dimer rather than a monomer of IN is required for the insertion of each recessed DNA end.

View Article and Find Full Text PDF

Integration of human immunodeficiency virus cDNA ends by integrase (IN) into host chromosomes involves a concerted integration mechanism. IN juxtaposes two DNA blunt ends to form the synaptic complex, which is the intermediate in the concerted integration pathway. The synaptic complex is inactivated by strand transfer inhibitors (STI) with IC(50) values of ∼20 nM for inhibition of concerted integration.

View Article and Find Full Text PDF

Raltegravir is an FDA approved inhibitor directed against human immunodeficiency virus type 1 (HIV-1) integrase (IN). In this study, we investigated the mechanisms associated with multiple strand transfer inhibitors capable of inhibiting concerted integration by HIV-1 IN. The results show raltegravir, elvitegravir, MK-2048, RDS 1997, and RDS 2197 all appear to encompass a common inhibitory mechanism by modifying IN-viral DNA interactions.

View Article and Find Full Text PDF

A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro.

View Article and Find Full Text PDF

Retrovirus integrase (IN) integrates the viral linear DNA genome ( approximately 10 kb) into a host chromosome, a step which is essential for viral replication. Integration occurs via a nucleoprotein complex, termed the preintegration complex (PIC). This article focuses on the reconstitution of synaptic complexes from purified components whose molecular properties mirror those of the PIC, including the efficient concerted integration of two ends of linear viral DNA into target DNA.

View Article and Find Full Text PDF

The "strand transfer inhibitors" of human immunodeficiency virus type-1 (HIV-1) integrase (IN), so named because of their pronounced selectivity for inhibiting strand transfer over 3' OH processing, block virus replication in vivo and ex vivo and prevent concerted integration in vitro. We explored the kinetics of product formation and strand transfer inhibition within reconstituted synaptic complexes capable of concerted integration. Synaptic complexes were formed with viral DNA donors containing either two blunt ends, two 3'-OH-processed ends, or one of each.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently.

View Article and Find Full Text PDF

The integration of retroviral DNA by the viral integrase (IN) into the host genome occurs via assembled preintegration complexes (PIC). We investigated this assembly process using purified IN and viral DNA oligodeoxynucleotide (ODN) substrates (93 bp in length) that were labeled with donor (Cy3) and acceptor fluorophores (Cy5). The fluorophores were attached to the 5' 2 bp overhangs of the terminal attachment (att) sites recognized by IN.

View Article and Find Full Text PDF

Retrovirus preintegration complexes (PIC) purified from virus-infected cells are competent for efficient concerted integration of the linear viral DNA ends by integrase (IN) into target DNA (full-site integration). In this report, we have shown that the assembled complexes (intasomes) formed in vitro with linear 3.6-kbp DNA donors possessing 3'-OH-recessed attachment (att) site sequences and avian myeloblastosis virus IN (4 nm) were as competent for full-site integration as isolated retrovirus PIC.

View Article and Find Full Text PDF

Systems for introducing DNA genes-of-interest into mammalian cellular genomes have ranged from the use of different physical techniques to viruses including retroviruses. We have developed a microinjection method for an efficient and permanent integration of a DNA transgene into the cell genome by use of the retrovirus integrase. A 3.

View Article and Find Full Text PDF