Publications by authors named "Ajayan Mano"

The single-step preparation of highly ordered mesoporous silica hybrid nanocomposites with conjugated polymers was explored using a novel cationic 3,4-propylenedioxythiophene (ProDOT) surfactant (PrS). The method does not require high-temperature calcination or a washing procedure. The combination of self-assembly of the silica surfactant and in situ polymerization of the ProDOT tail is responsible for creation of the mesoporosity with ultralarge pores, large pore volume, and electroactivity.

View Article and Find Full Text PDF

Highly ordered mesoporous carbon nitride (CN) with an extremely high nitrogen content and tunable pore diameters was synthesized by using a new precursor with a high nitrogen content, aminoguanidine hydrochloride and mesoporous silica SBA-15 with different pore diameters as hard templates. Surprisingly, the N/C ratio of the prepared mesoporous CN (MCN-4: 1.80) was considerably higher than that of the theoretically predicted C(3)N(4) nanostructures (1.

View Article and Find Full Text PDF

Highly basic MgO nanoparticles with different sizes have been successfully immobilized over mesoporous carbon with different pore diameters by a simple wet-impregnation method. The prepared catalysts have been characterized by various sophisticated techniques, such as XRD, nitrogen adsorption, electron energy loss spectroscopy, high-resolution TEM, X-ray photoelectron spectroscopy, and the temperature-programmed desorption of CO(2). XRD results reveal that the mesostructure of the support is retained even after the huge loading of MgO nanoparticles inside the mesochannels of the support.

View Article and Find Full Text PDF

Mesoporous SnO2 was prepared by a high temperature microwave assisted process using a low cost polymeric surfactant, poly(ethylene glycol). The obtained material has been characterized by several sophisticated techniques such as XRD, nitrogen adsorption, HRTEM, UV-Vis DRS, HRSEM and photoluminescence. The characterization results reveal that the obtained material exhibits a high surface area with a spherical morphology, crystalline walls and narrow mesopores.

View Article and Find Full Text PDF

Here we demonstrate for the first time the preparation of a triflic acid (TFA)-functionalized mesoporous nanocage with tunable pore diameters by the wet impregnation method. The obtained materials have been unambiguously characterized by XRD, N(2) adsorption, FTIR spectroscopy, and NH(3) temperature-programmed desorption (TPD). From the characterization results, it has been found that the TFA molecules are firmly anchored on the surface of the mesoporous supports without affecting their acidity.

View Article and Find Full Text PDF