Cu2Te is a superionic conductor that belongs to the Phonon Liquid Electron Crystal class of thermoelectric (TE) materials. Despite the simple chemical formula, the crystal structures and phases in the Cu2Te system have not been understood properly. In this work, we study the structural and TE properties of Cu2Te (CT2), Cu1.
View Article and Find Full Text PDFMagnetic skyrmions are topologically stable, vortex-like objects surrounded by chiral boundaries that separate a region of reversed magnetization from the surrounding magnetized material. They are closely related to nanoscopic chiral magnetic domain walls, which could be used as memory and logic elements for conventional and neuromorphic computing applications that go beyond Moore's law. Of particular interest is 'racetrack memory', which is composed of vertical magnetic nanowires, each accommodating of the order of 100 domain walls, and that shows promise as a solid state, non-volatile memory with exceptional capacity and performance.
View Article and Find Full Text PDFFully compensated ferrimagnets with tetragonal crystal structure have the potential for large spin-polarization and strong out-of-plane magnetic anisotropy; hence, they are ideal candidates for high-density-memory applications. Tetragonal Heusler thin films with compensated magnetic state are realized by substitution of Pt in Mn Pt Ga. Furthermore, the bilayer formed from compensated/uncompensated Mn-Pt-Ga layers is utilized to accomplish exchange bias up to room temperature.
View Article and Find Full Text PDFIt is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature.
View Article and Find Full Text PDFRational material design can accelerate the discovery of materials with improved functionalities. This approach can be implemented in Heusler compounds with tunable magnetic sublattices to demonstrate unprecedented magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state.
View Article and Find Full Text PDFWe have performed ac susceptibility and dc magnetization measurements in Ni(50-x)Co(x)Mn(38)Sb(12) Heusler alloys. From the ac susceptibility measurements, the existence of reentrant spin glass (RSG) state is observed for x=0-5. It is found that the signature of RSG behavior diminishes with increase in x.
View Article and Find Full Text PDF