Backgorund: The aim of the radiotherapy is to deliver a lethal dose to tumor while reducing the impact on the normal tissue. This reduction in impact can be achieved to have a greater therapeutic ratio by using nanoparticles as radiosensitizer.
Materials And Methods: In this article, the potential role of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitization enhancer on HT 29 cell lines for different concentrations (0.
Background: Treatment methods for cancer that are widely being utilized affect both normal and cancerous cells. We report synthesis polyethylene glycol (PEG)-coated FeO nanoparticles (NPs) and its characteristic properties and appraise its potential as a promising radiation sensitizer candidate in radiotherapy that improves cancer treatment and reduces side effects of radiation.
Materials And Methods: PEG-coated FeO NPs were synthesized by chemical coprecipitation method and characterized by studying their size, structure, functional group, stability, magnetization, and cytotoxicity using different techniques.