Publications by authors named "Ajay S Tanwar"

RNA-guided endonucleases, once thought to be exclusive to prokaryotes, have been recently identified in eukaryotes and are called Fanzors. They are classified into two clades, Fanzor1 and Fanzor2. Here we present the cryo-electron microscopy structure of Acanthamoeba polyphaga mimivirus Fanzor2, revealing its ωRNA architecture, active site and features involved in transposon-adjacent motif recognition.

View Article and Find Full Text PDF

Molecular tunnels in enzyme systems possess variable architecture and are therefore difficult to predict. In this work, we design and apply an algorithm to resolve the pathway followed by ammonia using the bifunctional enzyme formylglycinamide ribonucleotide amidotransferase (FGAR-AT) as a model system. Though its crystal structure has been determined, an ammonia pathway connecting the glutaminase domain to the 30 Å distal FGAR/ATP binding site remains elusive.

View Article and Find Full Text PDF

Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) is a 140 kDa bi-functional enzyme involved in a coupled reaction, where the glutaminase active site produces ammonia that is subsequently utilized to convert FGAR to its corresponding amidine in an ATP assisted fashion. The structure of FGAR-AT has been previously determined in an inactive state and the mechanism of activation remains largely unknown. In the current study, hydrophobic cavities were used as markers to identify regions involved in domain movements that facilitate catalytic coupling and subsequent activation of the enzyme.

View Article and Find Full Text PDF

NE0047 from Nitrosomonas europaea has been annotated as a zinc-dependent deaminase; however, the substrate specificity is unknown because of the low level of structural similarity and sequence identity compared to other family members. In this study, the function of NE0047 was established as a guanine deaminase (catalytic efficiency of 1.2 × 10(5) M(-1) s(-1)), exhibiting secondary activity towards ammeline.

View Article and Find Full Text PDF

Formylglycinamide ribonucleotide (FGAR) amidotransferase (FGAR-AT) takes part in purine biosynthesis and is a multidomain enzyme with multiple spatially separated active sites. FGAR-AT contains a glutaminase domain that is responsible for the generation of ammonia from glutamine. Ammonia is then transferred via a channel to a second active site located in the synthetase domain and utilized to convert FGAR to formylglycinamidine ribonucleotide (FGAM) in an adenosine triphosphate (ATP) dependent reaction.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Ajay S Tanwar"

  • - Ajay S Tanwar's recent research focuses on elucidating the structural and functional dynamics of enzyme systems, particularly through the study of RNA-guided endonucleases and amidotransferases, highlighting their evolutionary significance and mechanistic understandings.
  • - His work includes groundbreaking findings on the cryo-electron microscopy structure of Fanzor2, providing insights into its architecture and function, which marks a significant step in understanding RNA-guided endonucleases in eukaryotes.
  • - Additionally, Tanwar investigates complex enzyme pathways, such as those involving formylglycinamide ribonucleotide amidotransferase (FGAR-AT), exploring allosteric regulation and the role of specific structural features in catalytic processes and enzyme activation.