Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.
View Article and Find Full Text PDFAll aspects of biodiversity research, from taxonomy to conservation, rely on data associated with species names. Effective integration of names across multiple fields is paramount and depends on the coordination and organization of taxonomic data. We assess current efforts and find that even key applications for well-studied taxa still lack commonality in taxonomic information required for integration.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2023
Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge gaps by comparing CT records of terrestrial mammals and birds from the recently released Wildlife Insights platform to publicly available occurrences from many observation types in the Global Biodiversity Information Facility.
View Article and Find Full Text PDFThe Country Compendium of the Global Register of Introduced and Invasive Species (GRIIS) is a collation of data across 196 individual country checklists of alien species, along with a designation of those species with evidence of impact at a country level. The Compendium provides a baseline for monitoring the distribution and invasion status of all major taxonomic groups, and can be used for the purpose of global analyses of introduced (alien, non-native, exotic) and invasive species (invasive alien species), including regional, single and multi-species taxon assessments and comparisons. It enables exploration of gaps and inferred absences of species across countries, and also provides one means for updating individual GRIIS Checklists.
View Article and Find Full Text PDFAim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the (HMW) and the (CMW).
View Article and Find Full Text PDFA standardized delineation of the world's mountains has many applications in research, education, and the science-policy interface. Here we provide a new inventory of 8616 mountain ranges developed under the auspices of the Global Mountain Biodiversity Assessment (GMBA). Building on an earlier compilation, the presented geospatial database uses a further advanced and generalized mountain definition and a semi-automated method to enable globally standardized, transparent delineations of mountain ranges worldwide.
View Article and Find Full Text PDFA vast range of research applications in biodiversity sciences requires integrating primary species, genetic, or ecosystem data with other environmental data. This integration requires a consideration of the spatial and temporal scale appropriate for the data and processes in question. But a versatile and scale flexible environmental annotation of biodiversity data remains constrained by technical hurdles.
View Article and Find Full Text PDFConserving and managing biodiversity in the face of ongoing global change requires sufficient evidence to assess status and trends of species distributions. Here, we propose novel indicators of biodiversity data coverage and sampling effectiveness and analyze national trajectories in closing spatiotemporal knowledge gaps for terrestrial vertebrates (1950 to 2019). Despite a rapid rise in data coverage, particularly in the last 2 decades, strong geographic and taxonomic biases persist.
View Article and Find Full Text PDFTopographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology and is key to understanding the variation of life on the planet. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale research applications, however to date, such datasets are unavailable. Here we used the digital elevation model products of global 250 m GMTED2010 and near-global 90 m SRTM4.
View Article and Find Full Text PDFBackground: Increasing the quantity and quality of data is a key goal of biodiversity informatics, leading to increased fitness for use in scientific research and beyond. This goal is impeded by a legacy of geographic locality descriptions associated with biodiversity records that are often heterogeneous and not in a map-ready format. The biodiversity informatics community has developed best practices and tools that provide the means to do retrospective georeferencing (e.
View Article and Find Full Text PDF