Publications by authors named "Ajay Kumar Saxena"

Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV.

View Article and Find Full Text PDF

Old yellow enzymes (OYEs) play a critical role in antioxidation, detoxification and ergot alkaloid biosynthesis processes in various organisms. The yeast- and bacteria-like OYEs have been structurally characterized earlier, however, filamentous fungal pathogens possess a novel OYE class, that is, class III, whose biochemical and structural intricacies remain unexplored to date. Here, we present the 1.

View Article and Find Full Text PDF

The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is responsible for the COVID-19 outbreak. The highly contagious COVID-19 disease has spread to 216 countries in less than six months. Though several vaccine candidates are being claimed, an effective vaccine is yet to come.

View Article and Find Full Text PDF

Background: The novel coronavirus disease (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the ongoing 2019-2020 pandemic. SARS-CoV-2 is a positive-sense single-stranded RNA coronavirus. Effective countermeasures against SARS-CoV-2 infection require the design and development of specific and effective vaccine candidates.

View Article and Find Full Text PDF

Severe acute respiratory syndrome (SARS) is endemic in South China and is continuing to spread worldwide since the 2003 outbreak, affecting human population of 37 countries till present. SARS is caused by the severe acute respiratory syndrome Coronavirus (SARS-CoV). In the present study, we have designed two multi-epitope vaccines (MEVs) composed of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes overlap, bearing the potential to elicit cellular as well as humoral immune response.

View Article and Find Full Text PDF

An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C.

View Article and Find Full Text PDF

The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping.

View Article and Find Full Text PDF

The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs.

View Article and Find Full Text PDF

The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity.

View Article and Find Full Text PDF

Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (PiPT) from the root endophytic fungus Piriformospora indica, which can be grown axenically. The PiPT polypeptide belongs to the major facilitator superfamily.

View Article and Find Full Text PDF

Sac family phosphoinositide (PI) phosphatases are an essential family of CX(5)R(T/S)-based enzymes, involved in numerous aspects of cellular function such as PI homeostasis, cellular signalling, and membrane trafficking. Genetic deletions of several Sac family members result in lethality in animal models and mutations of the Sac3 gene have been found in human hereditary diseases. In this study, we report the crystal structure of a founding member of this family, the Sac phosphatase domain of yeast Sac1.

View Article and Find Full Text PDF