Publications by authors named "Ajay Kumar Mathur"

Unlabelled: CIM-Saumya is an improved, methyl chavicol rich variety of (Family-Lamiaceae), developed by Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants. This plant possesses analgesic, anti-ulcerogenic, anti-inflammatory, anti-oxidant, cardiac stimulant, Central Nervous System depressant, hepatoprotective and immunomodulator activities due to the presence of various phytoconstituents. Among them rosmarinic acid, caffeic acid and ferulic acid are the three major phenolic compounds responsible for its therapeutic utility.

View Article and Find Full Text PDF

The regeneration of a whole plant from a single cell or organ explant was a valuable task for plant biotechnology. However, important medicinal plants such as Catharanthus roseus have shown recalcitrance to regeneration protocols, thus limiting investigations on MIA metabolism and metabolic engineering in this plant system. In this chapter, successful regeneration protocols were detailed for Catharanthus roseus, either by direct shoot bud induction from leaf explants and Agrobacterium-mediated genetic transformation.

View Article and Find Full Text PDF

Unlabelled: The present study was carried out to silence the transcription factor genes , and via lipofectamine based antisense LNA GapmeRs transfection into the protoplasts of established photomixotrophic cell suspensions. The photomixotrophic cell suspensions with a threshold of 0.5% sucrose were raised and established using two-tiered CO providing flasks kept under high light intensity.

View Article and Find Full Text PDF

The antineoplastic herb, Catharanthus roseus is a classified high-value low-volume medicinal herb which is in global attention of scientific research for modulation of its monoterpenoid indole alkaloids (MIA) pathway through genetic engineering. These secondary metabolites are generally stored in specific types of structures/compartments due to their cytotoxic nature and designated roles in plant defense response. However, their presence can hinder the genetic engineering process used to develop transgenic plants through de novo morphogenesis and regeneration of plants from cultured cells/tissues and hence, it always remained a critical impediment in transgenic research in C.

View Article and Find Full Text PDF

contains monomeric eburnamine-type of indole alkaloids having utilization as a neuro-medicinal plant. The biosynthetic pathway studies using miRNAs has been the focal point for plant genomic research in recent years and this technique is utilized to get an insight into a possible pathway level study in as understanding of genes in this prized medicinal plant is meagrely understood. The de novo transcriptomic analysis using Illumina Next gen sequencing has been performed in glasshouse shifted plant and transformed roots to elucidate the possible non confirmed steps of terpenoid indole alkaloids (TIAs) pathway in .

View Article and Find Full Text PDF

Catharanthus roseus synthesizes one of the most structurally, chemically and biologically active phytomolecules monoterpenoids indole alkaloids (MIAs) with having a wide range of pharmaceutical activities. Being the sole source of antineoplastic MIAs vinblastine and vincristine C. roseus has become one of the most valued plant.

View Article and Find Full Text PDF

Terpenoid indole alkaloid (TIA) biosynthetic pathway of Catharanthus roseus possesses the major attention in current metabolic engineering efforts being the sole source of highly expensive antineoplastic molecules vinblastine and vincristine. The entire TIA pathway is fairly known at biochemical and genetic levels except the pathway steps leading to biosynthesis of catharanthine and tabersonine. To increase the in-planta yield of these antineoplastic metabolites for the pharmaceutical and drug industry, extensive plant tissue culture-based studies were performed to provide alternative production systems.

View Article and Find Full Text PDF

Catharanthus roseus today occupies the central position in ongoing metabolic engineering efforts in medicinal plants. The entire multi-step biogenetic pathway of its very expensive anticancerous alkaloids vinblastine and vincristine is fairly very well dissected at biochemical and gene levels except the pathway steps leading to biosynthesis of monomeric alkaloid catharanthine and tabersonine. In order to enhance the plant-based productivity of these pharma molecules for the drug industry, cell and tissue cultures of C.

View Article and Find Full Text PDF

An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial neural networks can model complex biological systems, helping to improve outputs and predict results more efficiently and cost-effectively.
  • In a study with Vinca minor, specific elicitors and inhibitors were used to enhance biomass, total alkaloids, and vincamine production, showing promising results.
  • The correlation between experimental outcomes and predictions from the neural network models (GRNN and FFBPNN) was very strong, indicating that these models can reliably guide future research in this area.
View Article and Find Full Text PDF

The present study aims at developing an extraction protocol for efficient ginsenoside recovery from cell suspensions of Panax quinquefolius and P. sikkimensis. Methanol (100%, 70% and 30%), water (40°C, 90°C), water-saturated butanol and butanol-saturated water were compared for their ultrasonication-assisted ginsenoside retrieval efficacy.

View Article and Find Full Text PDF

The age-dependent production kinetics of ginsenosides and an anthocyanin pigment in a cell suspension line of Panax sikkimensis was followed in vitro. Highest total saponin content [7.37 mg/g dry weight (DW)] and biomass accumulation (% biomass increase = 209.

View Article and Find Full Text PDF

Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene.

View Article and Find Full Text PDF

Hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from primary shikimate and secoiridoid pools have been fortified to vincamine less hairy root clone of Vinca minor to determine the regulatory factors associated with vincamine biosynthesis. Growth kinetic studies revealed that acetyltransferase elicitor acetic anhydride and terpenoid precursor loganin significantly reduce the growth either supplemented alone or in combination (GI = 140.6 ± 18.

View Article and Find Full Text PDF

Twenty-three pharmaceutically important plants, namely, Elaeocarpus spharicus, Rheum emodi, Indigofera tinctoria, Picrorrhiza kurroa, Bergenia ciliata, Lavandula officinalis, Valeriana wallichii, Coleus forskohlii, Gentiana kurroo, Saussurea lappa, Stevia rebaudiana, Acorus calamus, Pyrethrum cinerariaefolium, Aloe vera, Bacopa monnieri, Salvia sclarea, Glycyrrhiza glabra, Swertia cordata, Psoralea corylifolia, Jurinea mollis, Ocimum sanctum, Paris polyphylla, and Papaver somniferum, which are at the verge of being endangered due to their overexploitation and collection from the wild, were successfully established in vitro. Collections were made from the different biodiversity zones of India including Western Himalaya, Northeast Himalaya, Gangetic plain, Western Ghats, Semiarid Zone, and Central Highlands. Aseptic cultures were raised at the morphogenic level of callus, suspension, axillary shoot, multiple shoot, and rooted plants.

View Article and Find Full Text PDF

Catharanthus roseus (The Madagaskar Periwinkle) plant is commercially valued for harbouring more than 130 bioactive terpenoid indole alkaloids (TIAs). Amongst these, two of the leaf-derived bisindole alkaloids-vinblastine and vincristine-are widely used in several anticancer chemotherapies. The great pharmacological values, low in planta occurrence, unavailability of synthetic substitutes and exorbitant market cost of these alkaloids have prompted scientists to understand the basic architecture and regulation of biosynthesis of these TIAs in C.

View Article and Find Full Text PDF

Production of Agrobacterium tumefaciens-mediated transgenic plants, via direct shoot bud organogenesis from leaves of Catharanthus roseus, is reported. A. tumefaciens harbouring the plasmid pBI121 with GUS gene uidA and kanamycin resistance gene nptII was used.

View Article and Find Full Text PDF