Publications by authors named "Ajay K Royyuru"

Article Synopsis
  • The publication contained an error regarding the name of the fourteenth author.
  • The incorrect name was initially printed in the article.
  • The correct name has now been provided to clarify the mistake.
View Article and Find Full Text PDF
Article Synopsis
  • A clinical study was conducted in New York City with 30 glioblastoma patients to compare the effectiveness of whole genome sequencing (WGS) and RNA sequencing (RNA-seq) against targeted panel sequencing in identifying treatment options.
  • WGS/RNA-seq uncovered significantly more actionable clinical results—90% of the time—with an average of 16 times more unique variants identified, leading to 84 calls for actionable treatments that targeted panels missed.
  • The study found good agreement between manual and automated variant identification, showing that clinicians modified treatment plans based on this data in 10% of cases, marking a significant advancement in cancer treatment analysis.
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze a glioblastoma tumor specimen using three different methods to identify actionable variants.
  • Tumor DNA was assessed through targeted panel analysis, whole-genome sequencing (WGS), and RNA sequencing (RNA-seq), with data evaluated by both human experts and IBM Watson Genomic Analytics (WGA).
  • Results showed that WGS and RNA-seq identified more variants than targeted panels, and WGA performed the analysis much faster than human analysts, highlighting the potential for improved patient care with human-machine collaboration.
View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) constitute an important family of the G-protein coupled receptors. Due to their widespread distribution in the central nervous system (CNS), these receptors are attractive candidates for understanding the molecular basis of various cognitive processes as well as for designing inhibitors for relevant psychiatric and neurological disorders. Despite many studies on drugs targeting the mGluR receptors to date, the molecular level details on the ligand binding dynamics still remain unclear.

View Article and Find Full Text PDF

Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10-30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages.

View Article and Find Full Text PDF

Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human-like (alpha-2,6-linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses.

View Article and Find Full Text PDF

The single mutation effect on the binding affinity of H3N2 viral protein hemagglutinin (HA) with the monoclonical antibody fragment (Fab) is studied in this paper using the free energy perturbation (FEP) simulations. An all-atom protein model with explicit solvents is used to perform an aggregate of several microsecond FEP molecular dynamics simulations. A recent experiment shows that a single mutation in H3N2 HA, T131I, increases the antibody-antigen dissociation constant Kd by a factor of approximately 4000 (equivalent to a binding affinity decrease of approximately 5 kcal/mol), thus introducing an escape of the antibody (Ab) neutralization.

View Article and Find Full Text PDF

The mitochondrial DNA hypervariable segment I (HVS-I) is widely used in studies of human evolutionary genetics, and therefore accurate estimates of mutation rates among nucleotide sites in this region are essential. We have developed a novel maximum-likelihood methodology for estimating site-specific mutation rates from partial phylogenetic information, such as haplogroup association. The resulting estimation problem is a generalized linear model, with a nonstandard link function.

View Article and Find Full Text PDF

Lebanon is an eastern Mediterranean country inhabited by approximately four million people with a wide variety of ethnicities and religions, including Muslim, Christian, and Druze. In the present study, 926 Lebanese men were typed with Y-chromosomal SNP and STR markers, and unusually, male genetic variation within Lebanon was found to be more strongly structured by religious affiliation than by geography. We therefore tested the hypothesis that migrations within historical times could have contributed to this situation.

View Article and Find Full Text PDF

We propose a mechanism, based on a > or =10-micros molecular dynamics simulation, for the surprising misfolding of hen egg-white lysozyme caused by a single mutation (W62G). Our simulations of the wild-type and mutant lysozymes in 8 M urea solution at biological temperature (with both pH 2 and 7) reveal that the mutant structure is much less stable than that of the wild type, with the mutant showing larger fluctuations and less native-like contacts. Analysis of local contacts reveals that the Trp-62 residue is the key to a cooperative long-range interaction within the wild type, where it acts like a bridge between two neighboring basic residues.

View Article and Find Full Text PDF

Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al.

View Article and Find Full Text PDF

A recent study of 30 soluble globular protein structures revealed a quasi-invariant called the hydrophobic ratio. This invariant, which is the ratio of the distance at which the second order hydrophobic moment vanished to the distance at which the zero order moment vanished, was found to be 0.75 +/- 0.

View Article and Find Full Text PDF

The structural characteristics of a mucin glycopeptide motif derived from the N-terminal fragment STTAV of the cell surface glycoprotein CD43 have been investigated by NMR. In this study, a series of molecules prepared by total synthesis were examined, consisting of the peptide itself, three glycopeptides having clustered sites of alpha-O-glycosylation on the serine and threonine side chains with the Tn, TF, and STF carbohydrate antigens, respectively, and one with the beta-O-linked TF antigen. Additionally, a glycopeptide having the sequence SSSAVAV, triglycosylated with the Le(y) epitope, was investigated.

View Article and Find Full Text PDF