The present article portrayed on the killing kinetic of human pathogenic bacteria using bioinspired mesoporous CuAlO nanocomposites (NCs). The NCs was fabricated using leaf extract of medicinal plant Catharanthus roseus (CR) as a green reducer and stabilizer. As bio-fabricated material was calcined at 800 °C and characterized by several analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Raman, Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to authenticate its structure, phase, chemical bonding, chemical state, size and morphology behaviors.
View Article and Find Full Text PDFConsidering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems.
View Article and Find Full Text PDFPlatinum nanoparticles (Pt NPs) have numerous applications in various sectors, including pharmacology, nanomedicine, cancer therapy, radiotherapy, biotechnology and environment mitigation like removal of toxic metals from wastewater, photocatalytic degradation of toxic compounds, adsorption, and water splitting. The multifaceted applications of Pt NPs because of their ultra-fine structures, large surface area, tuned porosity, coordination-binding, and excellent physiochemical properties. The various types of nanohybrids (NHs) of Pt NPs can be fabricated by doping with different metal/metal oxide/polymer-based materials.
View Article and Find Full Text PDFBioinspired delta-bismuth oxide nanoparticles (δ-BiO NPs) have been synthesized using a greener reducing agent and surfactant co-precipitation method. The originality of this work is the use of flower extract for the first time for the fabrication of NPs, which were further calcined at 800 °C to obtain δ-BiO NPs. Physicochemical studies such as FTIR spectroscopy and XPS confirmed the formation of BiO NPs, whereas XRD and Raman verified the formation of the cubic delta (δ) phase of BiO NPs.
View Article and Find Full Text PDFThe present work demonstrated a novel -mediated green fabrication of nickel oxide nanoparticles (NiO NPs) to explore toxicity in Bm-17 and liver cells. As-fabricated bioinspired NiO NPs were characterized by several analytical techniques. X-ray diffraction (XRD) revealed a crystalline face-centered-cubic structure.
View Article and Find Full Text PDFUltra-thin graphene has been receiving significance in the diverse sections of material science, owing to its exceptional physicochemical and thermo-mechanical characteristics. Currently, the fabrication of high-grade graphene in an economical target and green procedures area is a massive concern. Among the diverse techniques, chemical-mediated fabrication is believed to be the finest process since it is simple, scalable, and of low-cost; however, it involves noxious or hazardous chemical reducers for producing functional graphene-based Nanocomposites (NCs).
View Article and Find Full Text PDFThe present article reports a facile approach to fabrication of mesoporous octahedron-shaped tricobalt tetroxide nanoparticles (CoO NPs) with a very narrow size distribution for eco-friendly remediation of toxic dyes. CoO NPs were fabricated by a solgel process using cobalt chloride hexahydrate (CoCl·6HO) and monosodium succinate (CHONa) as a chelating/structure-directing agent and sodium dodecyl sulfate as a surfactant. Moreover, the phase structure, elemental composition, and thermal and morphological facets of CoO NPs were investigated using XRD, FT-IR, EDS, Raman, XPS, TGA, SEM, and TEM techniques.
View Article and Find Full Text PDFThe ever-growing resistance of pathogens to antibiotics and crop disease due to pest has triggered severe health concerns in recent years. Consequently, there is a need of powerful and protective materials for the eradication of diseases. Metal/metal oxide nanoparticles (M/MO NPs) are powerful agents due to their therapeutic effects in microbial infections.
View Article and Find Full Text PDFIn the present article we have developed an eco-friendly, phytosynthetic, cost-effective and straightforward method for the synthesis of nearly monodisperse CuO nanospheres (NSP) using leaf extracts of medicinal plants Phyllanthus reticulatus (PR) and Conyza bonariensis (CB) as novel green reducing agents. Copper nitrate (Cu (NO)) was used as a precursor. The stoichiometric ratio of both leaf extracts (PR/CB) and Cu(NO) was standardized for the synthesis of NSP.
View Article and Find Full Text PDF