Publications by authors named "Ajay Chitnis"

Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms, believed to originate from the interstitial cells of Cajal (ICC), often caused by overexpression of tyrosine kinase receptors (TKR) KIT or PDGFRA. Here, we present evidence that the embryonic stem cell factor FOXD3, first identified as 'Genesis' and involved in both gastrointestinal and neural crest cell development, is implicated in GIST pathogenesis; its involvement is investigated both in vitro and in zebrafish and a mouse model of FOXD3 deficiency. Samples from a total of 58 patients with wild-type GISTs were used for molecular analyses, including Sanger sequencing, comparative genomic hybridization, and methylation analysis.

View Article and Find Full Text PDF

Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration.

View Article and Find Full Text PDF

The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin.

View Article and Find Full Text PDF

The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we describe theoretical and practical advances in algorithm and software design that result in image processing times that are tenfold to several thousand fold faster than with previous methods. First, we show that an 'unmatched back projector' accelerates deconvolution relative to the classic Richardson-Lucy algorithm by at least tenfold.

View Article and Find Full Text PDF

Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium.

View Article and Find Full Text PDF

The zebrafish, with its rapid external development, optical transparency, and the relative ease with which transgenic lines can be created, is rapidly becoming the model of choice for examining developmental processes via time-lapse microscopy. The recent proliferation of techniques for super-resolution imaging now allows for an unprecedented view of embryonic development at high spatial and temporal resolution in live tissues. This review examines both the theoretical basis and practical application of a number of established and emerging super-resolution microscopy techniques, focusing on their application in time-lapse imaging of live zebrafish embryos.

View Article and Find Full Text PDF

The zebrafish posterior lateral line primordium migrates along a path defined by the chemokine Cxcl12a, periodically depositing neuromasts, to pioneer formation of the zebrafish posterior lateral line system. , known for its role in promoting cell migration, is expressed in leading cells of the primordium in response to Cxcl12a, whereas its expression in trailing cells is inhibited by Fgf signaling. knockdown delays initiation of primordium migration.

View Article and Find Full Text PDF

Sixty-five years after Turing first revealed the potential of systems with local activation and long-range inhibition to generate pattern, we have only recently begun to identify the biological elements that operate at many scales to generate periodic patterns in nature. In this Primer, we first review the theoretical framework provided by Turing, Meinhardt, and others that suggests how periodic patterns could self-organize in developing animals. This Primer was developed to provide context for recent studies that reveal how diverse molecular, cellular, and physical mechanisms contribute to the establishment of the periodic pattern of hair or feather buds in the developing skin.

View Article and Find Full Text PDF

We improve multiphoton structured illumination microscopy using a nonlinear guide star to determine optical aberrations and a deformable mirror to correct them. We demonstrate our method on bead phantoms, cells in collagen gels, nematode larvae and embryos, Drosophila brain, and zebrafish embryos. Peak intensity is increased (up to 40-fold) and resolution recovered (up to 176 ± 10 nm laterally, 729 ± 39 nm axially) at depths ∼250 μm from the coverslip surface.

View Article and Find Full Text PDF

A description of zebrafish posterior Lateral Line (pLL) primordium development at single cell resolution together with the dynamics of Wnt, FGF, Notch and chemokine signaling in this system has allowed us to develop a framework to understand the self-organization of cell fate, morphogenesis and migration during its early development. The pLL primordium migrates under the skin, from near the ear to the tip of the tail, periodically depositing neuromasts. Nascent neuromasts, or protoneuromasts, form sequentially within the migrating primordium, mature, and are deposited from its trailing end.

View Article and Find Full Text PDF

Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP) a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt receptor and FGF receptor activity domains) to receptor-ligand parameters.

View Article and Find Full Text PDF

The zebrafish Posterior Lateral Line primordium (PLLp) has emerged as an important model system for studying many aspects of development, including cell migration, cell type specification and tissue morphogenesis. Despite this, basic aspects of PLLp biology remain incompletely understood. The PLLp is a group of approximately 140 cells which pioneers the formation of the Posterior Lateral Line (LL) system by migrating along the length of the embryo, periodically depositing clusters of epithelial cells, which will go on to form the mature sense organs of the lateral line, called neuromasts.

View Article and Find Full Text PDF

We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain.

View Article and Find Full Text PDF

The Notch signaling pathway plays fundamental roles in diverse developmental processes. Studies of the basic biology of Notch function have provided insights into how its dysfunction contributes to multi-systemic diseases and cancer. In addition, our understanding of Notch signaling in maintaining stem/progenitor cell populations is revealing new avenues for rekindling regeneration.

View Article and Find Full Text PDF

Lymphocytic interstitial pneumonia (LIP) is a rare form of interstitial lung disease usually associated with other systemic diseases; however, idiopathic cases are being reported. As per recent ATS/ERS 2013 guidelines, diagnostic criteria of clinical, radiological and histopathological for LIP is same as 2002 except some cystic changes on HRCT chest. Many cases diagnosed in the past as LIP now turn out to be NSIP; therefore as per new ATS/ERS classification whenever anybody report a case of LIP, NSIP should always be kept in mind as differential diagnosis.

View Article and Find Full Text PDF

Several signaling pathways work together, via a protein called Amotl2a, to establish the size and shape of a zebrafish sense organ primordium.

View Article and Find Full Text PDF

Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions with Mib1.

View Article and Find Full Text PDF

Fluorescence imaging methods that achieve spatial resolution beyond the diffraction limit (super-resolution) are of great interest in biology. We describe a super-resolution method that combines two-photon excitation with structured illumination microscopy (SIM), enabling three-dimensional interrogation of live organisms with ~150 nm lateral and ~400 nm axial resolution, at frame rates of ~1 Hz. By performing optical rather than digital processing operations to improve resolution, our microscope permits super-resolution imaging with no additional cost in acquisition time or phototoxicity relative to the point-scanning two-photon microscope upon which it is based.

View Article and Find Full Text PDF

Collective migration of cells in the zebrafish posterior lateral line primordium (PLLp) along a path defined by Cxcl12a expression depends on Cxcr4b receptors in leading cells and on Cxcr7b in trailing cells. Cxcr7b-mediated degradation of Cxcl12a by trailing cells generates a local gradient of Cxcl12a that guides PLLp migration. Agent-based computer models were built to explore how a polarized response to Cxcl12a, mediated by Cxcr4b in leading cells and prevented by Cxcr7b in trailing cells, determines unidirectional migration of the PLLp.

View Article and Find Full Text PDF

Existing super-resolution fluorescence microscopes compromise acquisition speed to provide subdiffractive sample information. We report an analog implementation of structured illumination microscopy that enables three-dimensional (3D) super-resolution imaging with a lateral resolution of 145 nm and an axial resolution of 350 nm at acquisition speeds up to 100 Hz. By using optical instead of digital image-processing operations, we removed the need to capture, store and combine multiple camera exposures, increasing data acquisition rates 10- to 100-fold over other super-resolution microscopes and acquiring and displaying super-resolution images in real time.

View Article and Find Full Text PDF

The posterior lateral line primordium (PLLp) migrates caudally and periodically deposits neuromasts. Coupled, but mutually inhibitory, Wnt-FGF signaling systems regulate proto-neuromast formation in the PLLp: FGF ligands expressed in response to Wnt signaling activate FGF receptors and initiate proto-neuromast formation. FGF receptor signaling, in turn, inhibits Wnt signaling.

View Article and Find Full Text PDF

Spinal muscular atrophy is an inherited motor neuron disease that results from a deficiency of the survival of motor neuron (SMN) protein. SMN is ubiquitinated and degraded through the ubiquitin proteasome system (UPS). We have previously shown that proteasome inhibition increases SMN protein levels, improves motor function, and reduces spinal cord, muscle, and neuromuscular junction pathology of spinal muscular atrophy (SMA) mice.

View Article and Find Full Text PDF

During development, morphogenetic processes require a precise coordination of cell differentiation, cell shape changes and, often, cell migration. Yet, how pattern information is used to orchestrate these different processes is still unclear. During lateral line (LL) morphogenesis, a group of cells simultaneously migrate and assemble radially organized cell clusters, termed rosettes, that prefigure LL sensory organs.

View Article and Find Full Text PDF

The interstitial cells of Cajal (ICCs) are important mediators of gastrointestinal (GI) motility because of their role as pacemakers in the GI tract. In addition to their function, ICCs are also structurally distinct cells most easily identified by their ultra-structural features and expression of the tyrosine kinase receptor c-KIT. ICCs have been described in mammals, rodents, birds, reptiles, and amphibians, but there are no reports at the ultra-structural level of ICCs within the GI tract of an organism from the teleost lineage.

View Article and Find Full Text PDF