The premise of this book is the importance of the tumor microenvironment (TME). Until recently, most research on and clinical attention to cancer biology, diagnosis, and prognosis were focused on the malignant (or premalignant) cellular compartment that could be readily appreciated using standard morphology-based imaging.
View Article and Find Full Text PDFPrecise detection of invasive cancer on whole-slide images (WSI) is a critical first step in digital pathology tasks of diagnosis and grading. Convolutional neural network (CNN) is the most popular representation learning method for computer vision tasks, which have been successfully applied in digital pathology, including tumor and mitosis detection. However, CNNs are typically only tenable with relatively small image sizes (200 × 200 pixels).
View Article and Find Full Text PDFWith the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability.
View Article and Find Full Text PDFComput Med Imaging Graph
April 2017
Digital histopathology slides have many sources of variance, and while pathologists typically do not struggle with them, computer aided diagnostic algorithms can perform erratically. This manuscript presents Stain Normalization using Sparse AutoEncoders (StaNoSA) for use in standardizing the color distributions of a test image to that of a single template image. We show how sparse autoencoders can be leveraged to partition images into tissue sub-types, so that color standardization for each can be performed independently.
View Article and Find Full Text PDFBreast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is the mitotic count, which involves quantifying the number of cells in the process of dividing (i.e.
View Article and Find Full Text PDFClinical trials increasingly employ medical imaging data in conjunction with supervised classifiers, where the latter require large amounts of training data to accurately model the system. Yet, a classifier selected at the start of the trial based on smaller and more accessible datasets may yield inaccurate and unstable classification performance. In this paper, we aim to address two common concerns in classifier selection for clinical trials: (1) predicting expected classifier performance for large datasets based on error rates calculated from smaller datasets and (2) the selection of appropriate classifiers based on expected performance for larger datasets.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
April 2014
Quantitative histomorphometry is the process of modeling appearance of disease morphology on digitized histopathology images via image-based features (e.g., texture, graphs).
View Article and Find Full Text PDFModified Bloom-Richardson (mBR) grading is known to have prognostic value in breast cancer (BCa), yet its use in clinical practice has been limited by intra- and interobserver variability. The development of a computerized system to distinguish mBR grade from entire estrogen receptor-positive (ER+) BCa histopathology slides will help clinicians identify grading discrepancies and improve overall confidence in the diagnostic result. In this paper, we isolate salient image features characterizing tumor morphology and texture to differentiate entire hematoxylin and eosin (H and E) stained histopathology slides based on mBR grade.
View Article and Find Full Text PDFComputer-aided prognosis (CAP) is a new and exciting complement to the field of computer-aided diagnosis (CAD) and involves developing and applying computerized image analysis and multi-modal data fusion algorithms to digitized patient data (e.g. imaging, tissue, genomic) for helping physicians predict disease outcome and patient survival.
View Article and Find Full Text PDFIn this paper, we attempt to quantify the prognostic information embedded in multi-parametric histologic biopsy images to predict disease aggressiveness in estrogen receptor-positive (ER+) breast cancers (BCa). The novel methodological contribution is in the use of a multi-field-of-view (multi-FOV) framework for integrating image-based information from differently stained histopathology slides. The multi-FOV approach involves a fixed image resolution while simultaneously integrating image descriptors from many FOVs corresponding to different sizes.
View Article and Find Full Text PDFWith the advent of digital pathology, imaging scientists have begun to develop computerized image analysis algorithms for making diagnostic (disease presence), prognostic (outcome prediction), and theragnostic (choice of therapy) predictions from high resolution images of digitized histopathology. One of the caveats to developing image analysis algorithms for digitized histopathology is the ability to deal with highly dense, information rich datasets; datasets that would overwhelm most computer vision and image processing algorithms. Over the last decade, manifold learning and non-linear dimensionality reduction schemes have emerged as popular and powerful machine learning tools for pattern recognition problems.
View Article and Find Full Text PDFThe presence of lymphocytic infiltration (LI) has been correlated with nodal metastasis and tumor recurrence in HER2+ breast cancer (BC). The ability to automatically detect and quantify extent of LI on histopathology imagery could potentially result in the development of an image based prognostic tool for human epidermal growth factor receptor-2 (HER2+) BC patients. Lymphocyte segmentation in hematoxylin and eosin (H&E) stained BC histopathology images is complicated by the similarity in appearance between lymphocyte nuclei and other structures (e.
View Article and Find Full Text PDFThe identification of phenotypic changes in breast cancer (BC) histopathology on account of corresponding molecular changes is of significant clinical importance in predicting disease outcome. One such example is the presence of lymphocytic infiltration (LI) in histopathology, which has been correlated with nodal metastasis and distant recurrence in HER2+ BC patients. In this paper, we present a computer-aided diagnosis (CADx) scheme to automatically detect and grade the extent of LI in digitized HER2+ BC histopathology.
View Article and Find Full Text PDFWith the increasing cost effectiveness of whole slide digital scanners, gene expression microarray and SNP technologies, tissue specimens can now be analyzed using sophisticated computer aided image and data analysis techniques for accurate diagnoses and identification of prognostic markers and potential targets for therapeutic intervention. Microarray analysis is routinely able to identify biomarkers correlated with survival and reveal pathways underlying pathogenesis and invasion. In this paper we describe how microarray profiling of tumor samples combined with simple but powerful methods of analysis can identify biologically distinct disease subclasses of breast cancer with distinct molecular signatures, differential recurrence rates and potentially, very different response to therapy.
View Article and Find Full Text PDFWe demonstrate the first in vivo gated 4D images of avian embryonic hearts by use of optical coherence tomography (OCT). We present a gated 4D dataset of an in vivo beating quail heart consisting of approximately 864,000 A-scans accumulated over multiple heartbeats. Generation of a gating trigger from a laser Doppler velocimetry (LDV) signal, collected from an outlying vitelline vessel, enabled us to gate image acquisition to the cardiac cycle.
View Article and Find Full Text PDF