Publications by authors named "Ajay Bakshi"

Bone marrow stromal cells (MSC) are attractive candidates for developing cell therapies for central nervous system (CNS) disorders. They can be easily obtained, expanded in culture, and promote modest functional recovery following transplantation into animal models of injured or degenerative CNS. While syngeneic MSC grafts can be used efficiently, achieving long-term survival of allogeneic MSC grafts has been a challenge.

View Article and Find Full Text PDF

Cell transplantation as a treatment for spinal cord injury is a promising therapeutic strategy whose effective clinical application would be facilitated by non-invasive delivery protocols. Cells derived from the bone marrow are particularly attractive because they can be obtained easily, expanded to large numbers and potentially used for autologous as well as allogeneic transplantation. In this study we tested the feasibility of a novel minimally invasive method--lumbar puncture (LP)--for transplanting bone marrow stromal stem cells (MSC) into a clinically relevant spinal cord contusion model.

View Article and Find Full Text PDF

Neural precursor cells (NPCs) are promising grafts for treatment of traumatic CNS injury and neurodegenerative disorders because of their potential to differentiate into neurons and glial cells. When designing clinical protocols for NPC transplantation, it is important to develop alternatives to direct parenchymal injection, particularly at the injury site. We reasoned that since it is minimally invasive, intrathecal delivery of NPCs at lumbar spinal cord (lumbar puncture) represents an important and clinically applicable strategy.

View Article and Find Full Text PDF

Object: Stem cell therapy has been shown to have considerable therapeutic potential for spinal cord injuries (SCIs); however, most experiments in animals have been performed by injecting cells directly into the injured parenchyma. This invasive technique compromises the injured spinal cord, although it delivers cells into the hostile environment of the acutely injured cord. In this study, the authors tested the possibility of delivering stem cells to injured spinal cord by using three different minimally invasive techniques.

View Article and Find Full Text PDF

Object: Spinal cord injury (SCI) is a complex pathological entity, the treatment of which requires a multipronged approach. One way to integrate different therapeutic strategies for SCI is to develop implantable scaffolds that can deliver therapies in a synergistic manner. Many investigators have developed implantable "bridges," but an important property of such scaffolds--that is, mechanical compatibility with host tissues--has been neglected.

View Article and Find Full Text PDF

Object: The aim of this study was to describe a new, minimally invasive technique for the endoscopic evacuation of intracerebral hematomas (ICHs) and the clinical and radiological outcomes in patients who underwent the procedure. The authors used a multifunctional three-in-one endoscopic instrument that combines a 0 degrees, 4-mm rigid telescope, an irrigation cannula, and a cautery electrode.

Methods: In 13 patients a small keyhole craniotomy was made through noneloquent cortex to gain access to the hematoma.

View Article and Find Full Text PDF

The authors combined a monopolar electrode and a suction/irrigation channel with a 0 degrees, 4-mm Hopkins rigid telescope into a single multifunctional unit. This three-in-one instrument is inserted through a lightweight 7.5-mm outer sheath, which is fixed separately.

View Article and Find Full Text PDF

Objectives: We investigated the effect of intratumoral administration of gamma-linolenic acid (GLA) in human gliomas.

Methods: We evaluated the effect of the administration of 1 mg of GLA for 7 d via a cerebral reservoir placed into the tumor bed or by direct intratumoral delivery in nine patients who had grade 4 disease and recurrent glioma after surgery, radiation, or chemotherapy.

Results: There was some, but not dramatic, improvement in patients' survival.

View Article and Find Full Text PDF