Publications by authors named "Ajay B Chitnis"

The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin.

View Article and Find Full Text PDF

The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we describe theoretical and practical advances in algorithm and software design that result in image processing times that are tenfold to several thousand fold faster than with previous methods. First, we show that an 'unmatched back projector' accelerates deconvolution relative to the classic Richardson-Lucy algorithm by at least tenfold.

View Article and Find Full Text PDF

Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium.

View Article and Find Full Text PDF

The zebrafish posterior lateral line primordium migrates along a path defined by the chemokine Cxcl12a, periodically depositing neuromasts, to pioneer formation of the zebrafish posterior lateral line system. , known for its role in promoting cell migration, is expressed in leading cells of the primordium in response to Cxcl12a, whereas its expression in trailing cells is inhibited by Fgf signaling. knockdown delays initiation of primordium migration.

View Article and Find Full Text PDF

Sixty-five years after Turing first revealed the potential of systems with local activation and long-range inhibition to generate pattern, we have only recently begun to identify the biological elements that operate at many scales to generate periodic patterns in nature. In this Primer, we first review the theoretical framework provided by Turing, Meinhardt, and others that suggests how periodic patterns could self-organize in developing animals. This Primer was developed to provide context for recent studies that reveal how diverse molecular, cellular, and physical mechanisms contribute to the establishment of the periodic pattern of hair or feather buds in the developing skin.

View Article and Find Full Text PDF

A description of zebrafish posterior Lateral Line (pLL) primordium development at single cell resolution together with the dynamics of Wnt, FGF, Notch and chemokine signaling in this system has allowed us to develop a framework to understand the self-organization of cell fate, morphogenesis and migration during its early development. The pLL primordium migrates under the skin, from near the ear to the tip of the tail, periodically depositing neuromasts. Nascent neuromasts, or protoneuromasts, form sequentially within the migrating primordium, mature, and are deposited from its trailing end.

View Article and Find Full Text PDF

Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP) a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt receptor and FGF receptor activity domains) to receptor-ligand parameters.

View Article and Find Full Text PDF

The zebrafish Posterior Lateral Line primordium (PLLp) has emerged as an important model system for studying many aspects of development, including cell migration, cell type specification and tissue morphogenesis. Despite this, basic aspects of PLLp biology remain incompletely understood. The PLLp is a group of approximately 140 cells which pioneers the formation of the Posterior Lateral Line (LL) system by migrating along the length of the embryo, periodically depositing clusters of epithelial cells, which will go on to form the mature sense organs of the lateral line, called neuromasts.

View Article and Find Full Text PDF

We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain.

View Article and Find Full Text PDF

Several signaling pathways work together, via a protein called Amotl2a, to establish the size and shape of a zebrafish sense organ primordium.

View Article and Find Full Text PDF

Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions with Mib1.

View Article and Find Full Text PDF

Collective migration of cells in the zebrafish posterior lateral line primordium (PLLp) along a path defined by Cxcl12a expression depends on Cxcr4b receptors in leading cells and on Cxcr7b in trailing cells. Cxcr7b-mediated degradation of Cxcl12a by trailing cells generates a local gradient of Cxcl12a that guides PLLp migration. Agent-based computer models were built to explore how a polarized response to Cxcl12a, mediated by Cxcr4b in leading cells and prevented by Cxcr7b in trailing cells, determines unidirectional migration of the PLLp.

View Article and Find Full Text PDF

The posterior lateral line primordium (PLLp) migrates caudally and periodically deposits neuromasts. Coupled, but mutually inhibitory, Wnt-FGF signaling systems regulate proto-neuromast formation in the PLLp: FGF ligands expressed in response to Wnt signaling activate FGF receptors and initiate proto-neuromast formation. FGF receptor signaling, in turn, inhibits Wnt signaling.

View Article and Find Full Text PDF

During development, morphogenetic processes require a precise coordination of cell differentiation, cell shape changes and, often, cell migration. Yet, how pattern information is used to orchestrate these different processes is still unclear. During lateral line (LL) morphogenesis, a group of cells simultaneously migrate and assemble radially organized cell clusters, termed rosettes, that prefigure LL sensory organs.

View Article and Find Full Text PDF

The interstitial cells of Cajal (ICCs) are important mediators of gastrointestinal (GI) motility because of their role as pacemakers in the GI tract. In addition to their function, ICCs are also structurally distinct cells most easily identified by their ultra-structural features and expression of the tyrosine kinase receptor c-KIT. ICCs have been described in mammals, rodents, birds, reptiles, and amphibians, but there are no reports at the ultra-structural level of ICCs within the GI tract of an organism from the teleost lineage.

View Article and Find Full Text PDF

We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially.

View Article and Find Full Text PDF

The posterior lateral line (pLL) in zebrafish has emerged as an excellent system to study how a sensory organ system develops. Here we review recent studies that illustrate how interactions between multiple signaling pathways coordinate cell fate,morphogenesis, and collective migration of cells in the posterior lateral line primordium. These studies also illustrate how the pLL system is contributing much more broadly to our understanding of mechanisms operating during the growth, regeneration, and self-organization of other organ systems during development and disease.

View Article and Find Full Text PDF

The posterior lateral line primordium (pLLp) migrates caudally, depositing neuromasts to establish the posterior lateral line system in zebrafish. A Wnt-dependent FGF signaling center at the leading end of the pLLp initiates the formation of `proneuromasts' by facilitating the reorganization of cells into epithelial rosettes and by initiating atoh1a expression. Expression of atoh1a gives proneuromast cells the potential to become sensory hair cells, and lateral inhibition mediated by Delta-Notch signaling restricts atoh1a expression to a central cell.

View Article and Find Full Text PDF

In the developing embryo, cell-cell signalling is necessary for tissue patterning and structural organization. During midline development, the notochord plays roles in the patterning of its surrounding tissues while forming the axial structure; however, how these patterning and structural roles are coordinated remains elusive. Here, we identify a mechanism by which Notch signalling regulates the patterning activities and structural integrity of the notochord.

View Article and Find Full Text PDF

Transcripts of notch and its target genes have been detected in some differentiating neurons. However, the role of Notch in neuronal differentiation remains poorly defined. Here, we show that a subset of differentiating sensory neurons in the trigeminal ganglia express her4.

View Article and Find Full Text PDF

Mind bomb1 (Mib1)-mediated endocytosis of the Notch ligand DeltaD is essential for activation of Notch in a neighboring cell. Although most DeltaD is localized in cytoplasmic puncta in zebrafish neural tissue, it is on the plasma membrane in mib1 mutants because Mib1-mediated endocytosis determines the normal subcellular localization of DeltaD. Knockdown of Notch increases cell surface DeltaA and DeltaD, but not DeltaC, suggesting that, like Mib1, Notch regulates endocytosis of specific ligands.

View Article and Find Full Text PDF

In canonical Delta-Notch signalling, expression of Delta activates Notch in neighbouring cells, leading to downregulation of Delta in these cells. This process of lateral inhibition results in selection of either Delta-signalling cells or Notch-signalling cells. Here we show that d-Asb11 is an important mediator of this lateral inhibition.

View Article and Find Full Text PDF

The Zic gene family of zinc-finger transcription factors includes five orthologues, zic1-5, that are common to the Euteleostian vertebrates (fish, frogs, birds, and mammals). The Zic genes have been implicated as regulators of a number of critical developmental processes, including neurulation, neuronal differentiation, neural crest specification, the establishment of left-right asymmetry, and regulation of cell proliferation. The different Zic genes encode proteins that are expressed in broadly overlapping spatial domains, have conserved DNA-binding domains that recognize a common motif, are capable of physical interactions, and can co-regulate one another's transcription.

View Article and Find Full Text PDF

Previous studies have shown that Delta-mediated Notch signaling regulates the number of early differentiating neurons. However, the role of Notch activation and Jagged-mediated signaling during late neurogenesis remains poorly defined. In the developing spinal cord of zebrafish, GABAergic Kolmer-Agduhr (KA'') cells and motor neurons (MN) emerge sequentially from their progenitors in the p3 domain.

View Article and Find Full Text PDF

Notch activation inhibits neuronal differentiation during development of the nervous system; however, the dynamic role of Notch signaling in individual cell lineages remains poorly understood. We have characterized 3.4 kb 5'-regulatory sequence of a Notch target gene, her4, and used it to drive fluorescent gene expression in transgenic lines where the spatiotemporal pattern of Notch activation can be examined in vivo.

View Article and Find Full Text PDF