Publications by authors named "Ajar Kamal"

Hg(ii) binding to thymine-rich oligonucleotides (ODNs) is investigated electrochemically. The focus of this study is to probe the effects of position on the electrochemical response. For this purpose, three oligonucleotides were investigated in which the position of a hexa-thymine repeat is varied within a surface-supported oligonucleotide.

View Article and Find Full Text PDF

Gemini surfactants have been the subject of intensive scrutiny by virtue of their unique combination of physical and chemical properties and being used in ordinary household objects to multifarious industrial processes. In this review, we summarize the recent developments of gemini surfactants, highlighting the classification of gemini surfactants based on the variation in headgroup polarity, flexibility/rigidity of spacer, hydrophobic alkyl chain and counterion along with potential applications of gemini surfactants, depicting the truly remarkable journey of gemini surfactants that has just come of age. We have focused on those objectives which will act as suitable candidates to take the field forward.

View Article and Find Full Text PDF

The present work describes the effect of the number of thymine-thymine mispairs in single strand DNA probes on Hg(ii) interactions and further to develop a highly sensitive DNA based impedimetric sensor for Hg(ii) detection. To achieve this goal, the influence of the number of T-T mispairs on the signal response prompted by DNA-Hg(ii) binding interactions was examined on three designed DNA probes: 5'-OH-(CH)-S-S-(CH)-AGTCCACACGTTCCTTACGC-3', 5'-OH-(CH)-S-S-(CH)-AGTCCACATTTTCCTTTTGC-3', 5'-OH-(CH)-S-S-(CH)-AGTCCATTTTTTCCTTTTTT-3' having 2T-T, 4T-T and 6T-T mispairs with identical length, respectively. This study revealed that the number of T-T mispairs plays a critical role in maximizing the signal intensity of DNA-Hg(ii) binding interactions.

View Article and Find Full Text PDF

The first sequence-dependent study of DNA films containing metal-mediated base pairs was performed to investigate the charge transfer resistance (R ) of metal-modified DNA. The imidazole (Im) deoxyribonucleoside was chosen as a highly Ag -specific ligandoside for the formation of Im-Ag -Im complexes within the duplexes. This new class of site-specifically metal-modified DNA films was characterized by UV, circular dichroism (CD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Electrochemical detection of Pam3CSK4, a synthetic triacylated lipopeptide that mimics the structural moieties of its natural Gram negative bacterial pathogen-associated molecular pattern (PAMP) counterpart, has been achieved using hybridized toll-like receptors (TLR) combining TLR1 and TLR2 onto a single sensor surface. These sensors represent the first hybridized TLR sensors. The limit of detection for Pam3CSK4 attained was 7.

View Article and Find Full Text PDF

The interactions of an anionic redox-active dye Alizarin Red S (ARS) with novel N-hydroxyethyl-3-alkyloxypyridinium surfactants 1-(2-hydroxyethyl)-3-(tetradecyloxy)pyridinium bromide, [HEC14OPyBr], and 1-(2-hydroxyethyl)-3-(hexadecyloxy)pyridinium bromide, [HEC16OPyBr], were investigated in an aqueous solution for the first time with an attempt to obtain comprehensive knowledge of oppositely charged dye-surfactant mixed systems. Different state-of-the-art techniques viz. conductivity, surface tension (ST), UV-visible spectroscopy, cyclic voltammetry (CV), linear sweep voltammetry (LSV), potentiometry, dynamic light scattering (DLS) and (1)H-NMR analysis have been employed.

View Article and Find Full Text PDF

The present study aims to develop an understanding of the interactions between an anionic polyelectrolyte, poly sodium 4-styrene sulphonate (NaPSS), and cationic surface active imidazolium based ionic liquids (SAILs), [Cnmim][Cl] (n = 10, 12, 14) using a multi-technique approach. Various physicochemical and electrochemical techniques such as surface tension, conductivity, fluorescence, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), turbidity, potentiometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are employed to obtain comprehensive information about NaPSS-SAIL interactions. Different stages of interaction, corresponding to the critical aggregation concentration (cac), critical saturation concentration (Cs) and critical micelle concentration (cmc) have been observed owing to the strong electrostatic and hydrophobic interactions, and the results obtained from different techniques complement each other very well.

View Article and Find Full Text PDF

The voltammetric and potentiometric sensors based on a novel electroactive rhodamine dimer (RD) have been developed for the determination of Fe (III) ions. The RD exhibits two anodic peaks at 0.5 V and 0.

View Article and Find Full Text PDF

The construction and electrodes characteristics of poly(vinylchloride) (PVC)-based polymeric membrane electrode (PME) and coated graphite electrode (CGE), incorporating 1,3-alternate thiacalix[4]crown as ionophore for estimation of Hg(II) ions, are reported here. The best potential response was observed for PME-1 having membrane composition of: ionophore (6.2 mg), PVC (100.

View Article and Find Full Text PDF