Publications by authors named "Aizhong Ye"

Runoff from the Qinghai-Tibetan Plateau, a major global water tower, is crucial to regional hydrological processes and the availability of water for a large population living downstream. Climate change, especially changes in precipitation and temperature, directly impacts hydrological processes and exacerbates shifts in the cryosphere, such as glacier and snow melt, leading to changes in runoff. Although there is a consensus on increased runoff due to climate change, it is still unclear to what extent precipitation and temperature contribute to runoff variations.

View Article and Find Full Text PDF

A reliable estimate of the gross primary productivity (GPP) of terrestrial vegetation is essential for both making decisions to address global climate change and understanding the global carbon balance. The lack of consistency in global terrestrial GPP estimates across various products leads to great uncertainty. In this study, we improve the quantification of global gross primary productivity by integrating multiple source GPP products without using any prior knowledge through the Bayesian-based Three-Cornered Hat (BTCH) method to generate a new weighted GPP data set.

View Article and Find Full Text PDF

Gross primary productivity (GPP) is a vital variable of the global carbon cycle, but the quantification of global GPP is subject to significant uncertainty due to the lack of direct observations at a global scale. Here, we evaluated and compared 45 GPP products in terms of their applicability to different vegetation types at various spatiotemporal scales. The results show that 44 GPP products and obsGPP (Model Tree Ensemble GPP derived from observations and named obsGPP) have similar global patterns with correlation coefficients greater than 0.

View Article and Find Full Text PDF

The features of hydro-climate anomalies in China in 2015-2016 were analyzed in great detail, together with possible responses to the super 2015-16 El Niño event. The 2015-16 El Niño is characterized as a "strong" event in terms of the duration, intensity, and coverage of warming sea surface temperature (SST) in the central and east-central equatorial Pacific in comparison to the 1982-83 and 1997-98 events. The floods and droughts frequency were incidence of floods and droughts per year, respectively.

View Article and Find Full Text PDF

Climate change and human activities have changed the spatial-temporal distribution of water resources, especially in a fragile ecological area such as the upper reaches of the Minjiang River (UMR) basin, where they have had a more profound effect. The average of double-mass curve (DMC) and Distributed Time-Variant Gain Hydrological Model (DTVGM) are applied to distinguish between the impacts of climate change and human activities on water resources in this paper. Results indicated that water resources decreased over nearly 50 years in the UMR.

View Article and Find Full Text PDF

The lateral movement of soil carbon has a profound effect on the carbon budget of terrestrial ecosystems; however, it has never been quantified in China, which is one of the strongest soil erosion areas in the world. In this study, we estimated that the overall soil erosion in China varies from 11.27 to 18.

View Article and Find Full Text PDF

Climate change has impacts on both natural and human systems. Accurate information regarding variations in precipitation and temperature is essential for identifying and understanding these potential impacts. This research applied Mann-Kendall, rescaled range analysis and wave transform methods to analyze the trends and periodic properties of global and regional surface air temperature (SAT) and precipitation (PR) over the period of 1948 to 2010.

View Article and Find Full Text PDF