Salt bladders, specialized structures on the surface of quinoa leaves, secrete Na to mitigate the effects of the plant from abiotic stresses, particularly salt exposure. Understanding the development of these structures is crucial for elucidating quinoa's salt tolerance mechanisms. In this study, we employed transmission electron microscopy to detail cellular differentiation across the developmental stages of quinoa salt bladders.
View Article and Find Full Text PDFPlastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase -subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in .
View Article and Find Full Text PDFEpidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors.
View Article and Find Full Text PDFPlant Environ Interact
February 2023
Through crosstalk, FLAGELLIN SENSITIVE 2 (FLS2) and RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) are involved in regulating the homeostasis of cellular reactive oxygen species (ROS) and are linked to the metabolic response of plants toward both biotic and abiotic stress. In the present study, we examined the metabolome of seedlings under drought and salt conditions to better understand the potential role of FLS2 and RBOHD-dependent signaling in the regulation of abiotic stress response. We identified common metabolites and genes that are regulated by FLS2 and RBOHD, and are involved in the response to drought and salt stress.
View Article and Find Full Text PDFCotton is one of the major cash crops globally. It is characterized by determinate growth and multiple fruiting, which makes the source-sink contradiction more obvious. Coordination between source and sink is crucial for normal growth, yield, and quality of cotton.
View Article and Find Full Text PDFOver the course of evolution, plants have developed plasticity to acclimate to environmental stresses such as drought and salt stress. These plant adaptation measures involve the activation of cascades of molecular networks involved in stress perception, signal transduction and the expression of stress related genes. Here, we investigated the role of the plasma membrane-localized transporter of auxin PINFORMED1 (PIN1) in the regulation of pavement cells (PCs) and guard cells (GCs) development under drought and salt stress conditions.
View Article and Find Full Text PDFThe recent and continuous improvement in single-cell RNA sequencing (scRNA-seq) technology has led to its emergence as an efficient experimental approach in plant research. However, compared with single-cell research in animals and humans, the application of scRNA-seq in plant research is limited by several challenges, including cell separation, cell type annotation, cellular function analysis, and cell-cell communication networks. In addition, the unavailability of corresponding reliable and stable analysis methods and standards has resulted in the relative decentralization of plant single-cell research.
View Article and Find Full Text PDFIn recent years, advances in single-cell RNA sequencing (scRNA-seq) technologies have continued to change our views on biological systems by increasing the spatiotemporal resolution of our analysis to single-cell resolution. Application of scRNA-seq to plants enables the comprehensive characterization of both common and rare cell types and cell states, uncovering new cell types and revealing how cell types relate to each other spatially and developmentally. This review provides an overview of scRNA-seq methodologies, highlights the application of scRNA-seq in plant science, justifies why scRNA-seq is a master player of sequencing, and explains the role of single-cell transcriptomics technologies in environmental stress adaptation, alongside the challenges and prospects of single-cell transcriptomics.
View Article and Find Full Text PDFAs sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways.
View Article and Find Full Text PDFCotton ( spp.) is one of the most important cash crops worldwide. At present, new cotton varieties are mainly produced through conventional cross breeding, which is limited by available germplasm.
View Article and Find Full Text PDFThe leaf veins of higher plants contain a highly specialized vascular system comprised of xylem and phloem cells that transport water, organic compounds and mineral nutrients. The development of the vascular system is controlled by phytohormones that interact with complex transcriptional regulatory networks. Before the emergence of true leaves, the cotyledons of young seedlings perform photosynthesis that provides energy for the sustainable growth and survival of seedlings.
View Article and Find Full Text PDFJ Econ Entomol
February 2013
Glenea cantor (F.) is a cerambycid species that attacks living trees of at least seven plant families in Asia, and has the potential to become an invasive pest. Here we investigated its reproductive biology in the laboratory to provide vital information for the development of pest control measures and preparation of pest risk analysis.
View Article and Find Full Text PDF