Publications by authors named "Aiyou Hao"

Topochemical reactions normally occurring in the solid and crystalline state exhibit solvent-free and catalyst-free properties, with high atom economy properties, which have been widely applied in materials science and polymer synthesis. Herein, we explore the potential of topochemical reactions for controlling the emergence of supramolecular chirality and the precise fabrication of chiroptical materials. Boronic acid pinacol esters (BPin) were conjugated to naphthalimides containing an inherent chiral cholesteryl group linked by alkyl or benzene spacers.

View Article and Find Full Text PDF

The formation of asymmetric microenvironments in proteins benefits from precise transportation of chirality across multiple levels through weak bonds in the folding and assembly process, which inspires the rational design and fabrication of artificial chiral materials. Herein, the chalcogen bonding-directed precise transportation of supramolecular chirality toward multiple levels is reported to aid the fabrication of chiroptical materials. Benzochalcogenadiazole (O, S, Se) motifs are conjugated to amino acid residues, and the solid-state assemblies afforded selective supramolecular chirality with handedness depending on the kinds of chalcogen atoms and amino acids.

View Article and Find Full Text PDF

Developing chiral molecular platforms that respond to external fields provides opportunities for designing smart chiroptical materials. Herein, we introduce a molecular clamp whose chiral properties can be turned on by photoactivation. Selective anion binding achieves rational tuning of the conformations and chiroptical properties of the clamp, including circular dichroism and circularly polarized luminescence.

View Article and Find Full Text PDF

Inherent luminescent short peptides essentially provide opportunities to rationally manipulate supramolecular chirality and chiral luminescence. Herein, a facile protocol to construct a series of naphthalimide-appended dipeptides is reported that show ultrasound wave-activated supramolecular chirality regulated by odd-even law. Naphthalimide luminophores are conjugated to the dipeptide skeleton with variable alkyl spacers.

View Article and Find Full Text PDF

Hypervalent iodine(III) have widely been utilized for organic synthetic reagents. They are also recognized as positive charge-assisted, exceptionally robust biaxial halogen bond donors, while their potential in supramolecular materials is barely explored. This work reports a cyclic diaryliodonium ion as biaxial halogen bonding donor that displays remarkable binding affinity toward phenanthroline or acridine acceptors with chiral pendants.

View Article and Find Full Text PDF
Article Synopsis
  • - Macrocycle-based host-guest complexation can create chiroptical materials, but challenges like bulky sizes and dynamic exchanges limit ordered chiral arrangements.
  • - The study reveals that cucurbit[n]uril (CB[n]) complexes involving cationic chiral pendants and perylene diimides (PDIs) exhibit selective chiroptical properties in water, with various factors affecting chiral aggregation.
  • - CB[6] promotes the formation of one-dimensional fibrous nanoarchitectures, enhancing supramolecular chirality, while CB[7] tends to disrupt ordered arrangements due to its larger cavity and better water solubility.
View Article and Find Full Text PDF

Responsive chiral optical materials have gained considerable interests from the fields of sensing, display, and optical devices. Materials that are capable of changing chiral optics under harsh conditions such as strong basic/acidic or ultrahigh temperature provides thoughts for the design of materials working at special environments, which however, are still underdeveloped. Here, a proof-of-concept design of organogel is reported that acts as matrices for thermal chiroptical switch with critical working temperature above 100 °C.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses how dynamic chemistry, using both covalent and noncovalent bonds, can manipulate the properties of self-assemblies, particularly in achieving control over supramolecular chirality through multiple routes.
  • It highlights the process where N-protected fluorinated phenylalanine forms achiral nanoparticles that can transform into chiral structures with the application of protonation and hydrogen bonding interactions.
  • The research demonstrates the ability to fine-tune chiral nanoarchitectures using pH adjustments and reactions, leading to materials that exhibit unique luminescent properties, thereby expanding options in creating responsive chiroptical materials.
View Article and Find Full Text PDF

Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies.

View Article and Find Full Text PDF

Diastereoselective effect plays an important role in the synthesis of chiral complexes and macrocyclic compounds, while its function in selective coassembly and chirality transfer has yet to be unveiled. In this work, two pairs of diastereomers containing R/S- binaphthyl and homochiral cholesteryl domains are synthesized, which provide multiple sites to encapsulate polyaromatic hydrocarbon through π-π and CH-π interactions. X-ray structures and computational studies suggest the binaphthol derivatives feature CH-π folding into butterfly-like open geometry, while binaphthylenediamine derivatives adopt closed geometry supported by van der Waals between cholesteryl domains.

View Article and Find Full Text PDF

Halogen bonding acknowledged as a noteworthy weak interaction, has gained growing recognition in the field of supramolecular chemistry. In this study, we selected structurally rigid diaryliodonium ions (I(III)) with two biaxial σ-holes as halogen-bond donors, to bind with three chiral acceptor molecules bearing cholesteryl and naphthalimides with distinct geometries. The abundant carbonyl oxygen atoms in side-arm substituents function as multiple acceptors for halogen bonding.

View Article and Find Full Text PDF

Solvents influence the structure, aggregation and folding behaviors of solvatochromic compounds. Ultrasensitive solvent mediated chiroptical response is conducive to the fabrication of molecular platform for sensing and recognition, which however, remains great challenges in conceptual or applicable design. Here we report a cysteine-based single benzene chromophore system that shows ultrasensitivity to solvents.

View Article and Find Full Text PDF

π-π stacking interaction is an attractive interaction that involves aromatic groups containing π-conjugated domains. It is a promising strategy for stabilizing folded structures with interesting chiroptical properties and manipulating the supramolecular chiral self-assembly process. In this study, we report the engineering of π-conjugated amino acids that utilize π-π stacking interactions to manipulate chiral folding as well as self-assembly evolution.

View Article and Find Full Text PDF

Oligomerization and folding of chiral compounds afford diversified chiral molecular architectures with interesting chiroptical properties, but their rational and precise control remain poorly understood. In this work, we employed arene-perfluoroarene (AP) interaction to manipulate the folding and dimerization of alanine derivatives bearing pyrene and a perfluoronaphthalene derivative. Based on X-ray crystallography and nuclear magnetic resonance, the compound with a smaller tether and high skeleton rigidity self-assembled into double helical dimers by duplex hydrogen bonding and AP forces in a less polar solvent.

View Article and Find Full Text PDF

Chalcogen and pnictogen-based σ-hole interactions have shown limited applications in controlling supramolecular chirality. In this work, we employed chalcogen and pnictogen bonding to control supramolecular chirality in a multiple-constituent system with modulate chiral optics. Phenyl phosphonium-selenium conjugates with electrophilic σ-hole regions were allowed to coassemble with the π-conjugated deprotonated amino acids.

View Article and Find Full Text PDF

Axial chiral molecules are extensively used as skeletons in ligands for asymmetric catalysis and as building blocks of chiroptical materials. Designing axial chirality at the supramolecular level potentially endows a material with dynamic tunability and adaptivity. In this work, for the first time, we have reported a series of halogen-bonded dimeric complexes with axial chirality that were formed by noncovalent bonds.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) show particular properties compared to ionic liquids and other traditional organic solvents. Controlled synthesis of chiral materials in DESs is unprecedented due to the complex interplays between DESs and solutes. In this work, all bio-derived chiral DESs were prepared using choline chloride or cyclodextrin as hydrogen bonding acceptors and natural chiral acids as donors, which performed as chiral matrices for the rational synthesis of chiroptical materials by taking advantage of the efficient chirality transfer between the DESs and solutes.

View Article and Find Full Text PDF

Hematoxylin has a V-shaped chiral geometry, but its potential in chiroptical self-assembled materials is underdeveloped. Herein, three novel V-shaped chiral hematoxylin derivatives were synthesized, and they showed extended skeletons as well as photophysical and chiroptical behaviors. Moreover, their host-guest interactions with C were investigated.

View Article and Find Full Text PDF

Metal-organic polyhedra (MOPs) are inherently porous, discrete, and solvent-dispersive, and directing them into chiral superlattices through direct self-assembly remains a considerable challenge due to their nanoscale size and structural complexity. In this work, we illustrate a postmodification protocol to covalently conjugate a chiral cholesteryl pendant to MOPs. Postmodification retained the coordination cores and allowed for reaction-induced self-assembly in loosely packed nanosized columns without supramolecular chirality.

View Article and Find Full Text PDF

It remains challenging to construct multifunctional chiral stimulus-responsive molecules and to modulate their morphology at the nanoscale. In this paper, we synthesized a novel chiral molecule with both photoactive and potentially bioactive properties and found that the morphological changes of its self-assembly were influenced by solvent polarity and light exposure. This work enabled the synthesized molecule to undergo - isomerization efficiently under light irradiation by introducing highly oriented hydrogen bonds into the cyanostilbene part.

View Article and Find Full Text PDF

How halogenation affects protein or peptide folding and self-assembly hierarchically? This study tries to answer this question by using the halogen bonding mediated self-assemblies on cyclodipeptide scaffolds. Single-functionalized cyclodipeptides (Cyclo-GX) based on para-halogenated phenylalanine in the solid state form homochiral helical nanotubes via consecutive X···O bonds (X = Cl, Br, and I) independent of halogen kinds. In contrast, double-functionalized cyclodipeptides (Cyclo-XX) feature versatile self-assembly architectures depending on the para-substituents (X = H, F, Cl, Br, and I), affording nanotubular, lamellar, and triple helical nanotubular architectures.

View Article and Find Full Text PDF

Solvent strategy is a powerful tool to manipulate chirality and self-assembly over hierarchical levels, yet the solvent dynamics during thermal annealing in controlling chirality and chiroptical features remain a mystery. Here, we show how solvent migration affects molecular folding and chirality through thermal annealing. Pyrene segments were conjugated to a 2,6-diamide pyridine skeleton, where intramolecular hydrogen bonds anchor the chiral geometry.

View Article and Find Full Text PDF

Multiple constituent coassembly is an emerging strategy to manipulate supramolecular chirality and chiroptical properties such as circularly polarized luminescence (CPL). However, the second or third constituent could not be removed from pristine self-assembly. Here we developed a constitute-removable chiral coassembly using sublimation that could realize coassembly with tunable supramolecular chirality, luminescence and CPL properties.

View Article and Find Full Text PDF

Hydrogels behave as potential candidates to investigate circularly polarized light (CP)-matter interaction, which however suffer from small sensitivity towards circular polarization. Here we report a general protocol to build hydrogels from π-conjugated amino acids with coassembled charge-transfer (CT) complexes, covering a wide scope of donors and acceptors, which were incorporated into stable hydrogel matrices. CT complexes formed block coassemblies with gelators, induced the emergence of macroscopic chiral helices, where efficient chirality transfer occurs to realize tunable Cotton effects from visible light to NIR-I region depending on the structures of CT pairs.

View Article and Find Full Text PDF

The [N···I···N] type halogen bond has been utilized to synthesize supramolecular architectures, while the applications in constructing helical motifs and modulating supramolecular chirality have been unexplored so far. In this work, the [N···I···N] halogen bond was introduced to drive the formation of supramolecular helical polymers via a Ag(I) coordination intermediate, showing tunable supramolecular chirality. Pyridine segments were conjugated to the asymmetric ferrocene skeleton, which show "" and "" geometry depending on the N positions.

View Article and Find Full Text PDF