Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties.
View Article and Find Full Text PDFBackground And Purpose: Recently identified antagonists of the urotensin-II (U-II) receptor (UT) are of limited utility for investigating the (patho)physiological role of U-II due to poor potency and limited selectivity and/or intrinsic activity.
Experimental Approach: The pharmacological properties of two novel UT antagonists, GSK1440115 and GSK1562590, were compared using multiple bioassays.
Key Results: GSK1440115 (pK(i)= 7.
Background: Human urotensin II (UII) is a potent mammalian vasoconstrictor thought to be produced and cleared by the kidneys. Conflicting data exist regarding the relationship between UII concentrations, kidney function and blood pressure (BP). We measured the associations between kidney function [including end-stage renal disease (ESRD)] and levels of BP with plasma concentrations of UII.
View Article and Find Full Text PDFBenzofuran-substituted urea analogs have been identified as novel P2Y(1) receptor antagonists. Structure-activity relationship studies around the urea and the benzofuran moieties resulted in compounds having improved potency. Several analogs were shown to inhibit ADP-mediated platelet activation.
View Article and Find Full Text PDFThe evidence is compelling for a role of inflammation in cardiovascular diseases; however, the chronic use of anti-inflammatory drugs for these indications has been disappointing. The recent study compares the effects of two anti-inflammatory agents [cyclooxygenase 2 (COX2) and p38 inhibitors] in a model of cardiovascular disease. The vascular, renal, and cardiac effects of 4-(4-methylsulfonylphenyl)-3-phenyl-5H-furan-2-one (rofecoxib; a COX2 inhibitor) and 6-{5-[(cyclopropylamino)carbonyl]-3-fluoro-2-methylphenyl}-N-(2,2-dimethylpropyl)-3-pyridinecarboxamide [GSK-AHAB, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor], were examined in the spontaneously hypertensive stroke-prone rat (SHR-SP).
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2008
High-throughput screening of the GSK compound collection against the P2Y(1) receptor identified a novel series of tetrahydro-4-quinolinamine antagonists. Optimal substitution around the piperidine group was pivotal for ensuring activity. An exemplar analog from this series was shown to inhibit platelet aggregation.
View Article and Find Full Text PDFBackground And Purpose: The recent development of the UT ligand palosuran (1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulphate salt) has led to the proposition that urotensin-II (U-II) plays a significant pathological role in acute and chronic renal injury in the rat.
Experimental Approach: In the present study, the pharmacological properties of palosuran were investigated further using a series of radioligand binding and functional bioassays.
Key Results: Palosuran functioned as a 'primate-selective' UT ligand in recombinant cell membranes (monkey and human UT K(i) values of 4 +/- 1 and 5 +/- 1 nM), lacking appreciable affinity at other mammalian UT isoforms (rodent and feline K(i) values >1 microM).
SAR exploration of the central diamine, benzyl, and terminal aminoalkoxy regions of the N-cyclic azaalkyl benzamide series led to the identification of very potent human urotensin-II receptor antagonists such as 1a with a K(i) of 4 nM. The synthesis and structure-activity relationships (SAR) of N-cyclic azaalkyl benzamides are described.
View Article and Find Full Text PDFLead compound 1 was successfully redesigned to provide compounds with improved pharmacokinetic profiles for this series of human urotensin-II antagonists. Replacement of the 2-pyrrolidinylmethyl-3-phenyl-piperidine core of 1 with a substituted N-methyl-2-(1-pyrrolidinyl)ethanamine core as in compound 7 resulted in compounds with improved oral bioavailability in rats. The relationship between stereochemistry and selectivity for hUT over the kappa-opioid receptor was also explored.
View Article and Find Full Text PDFThis work describes the development of potent and selective human Urotensin-II receptor antagonists starting from lead compound 1, (3,4-dichlorophenyl)methyl{2-oxo-2-[3-phenyl-2-(1-pyrrolidinylmethyl)-1-piperidinyl]ethyl}amine. Several problems relating to oral bioavailability, cytochrome P450 inhibition, and off-target activity at the kappa opioid receptor and cardiac sodium channel were addressed during lead development. hUT binding affinity relative to compound 1 was improved by more than 40-fold in some analogs, and a structural modification was identified which significantly attenuated both off-target activities.
View Article and Find Full Text PDFBackground And Purpose: Atypical cannabinoids are thought to cause vasodilatation through an as-yet unidentified 'CBx' receptor. Recent reports suggest GPR55 is an atypical cannabinoid receptor, making it a candidate for the vasodilator 'CBx' receptor. The purpose of the present study was to test the hypothesis that human recombinant GPR55 is activated by atypical cannabinoids and mediates vasodilator responses to these agents.
View Article and Find Full Text PDFFunctional studies have demonstrated that adrenoceptor agonist-evoked relaxation is mediated primarily by beta3-adrenergic receptors (ARs) in human bladder. Thus, the use of selective beta3-AR agonists in the pharmacological treatment of overactive bladder is being explored. The present studies investigated the effects of a novel selective beta3-AR agonist, (R)-3'-[[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]ethyl]amino]-[1,1'-biphenyl]-3-carboxylic acid (GW427353; solabegron) on bladder function in the dog using in vitro and in vivo techniques.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2007
Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C.
View Article and Find Full Text PDFLysophosphatidylcholine (LPC) is the major bioactive lipid component of oxidized LDL, thought to be responsible for many of the inflammatory effects of oxidized LDL described in both inflammatory and endothelial cells. Inflammation-induced transformation of vascular smooth muscle cells from a contractile phenotype to a proliferative/secretory phenotype is a hallmark of the vascular remodeling that is characteristic of atherogenesis; however, the role of LPC in this process has not been fully described. The present study tested the hypothesis that LPC is an inflammatory stimulus in coronary artery smooth muscle cells (CASMCs).
View Article and Find Full Text PDFSeveral peptidic urotensin-II (UT) receptor antagonists exert 'paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells.BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied.
View Article and Find Full Text PDFBackground: Urotensin-II (U-II) is a vasoactive peptide with diffuse expression in human cardiomyocyte and vascular smooth muscle cells. Recent studies have reported increased plasma levels of U-II in patients with congestive heart failure.
Objective: We sought to determine the plasma levels of U-II in patients with acute coronary syndromes (ACS), stable coronary artery disease (CAD) and healthy controls.
Urotensin-II (U-II), a ligand for the G-protein-coupled receptor UT, has been characterized as the most potent mammalian vasoconstrictor identified to date. Although circulating levels of U-II are altered in lower species (e.g.
View Article and Find Full Text PDFUrotensin-II is purported to influence pulmonary function by modulating smooth muscle tone/growth. In the present study, Northern blot and reverse transcription polymerase chain reaction (RT-PCR) analysis indicated the presence of UT receptor mRNA in cat trachea, bronchi and lung parenchyma. Urotensin-II contracted cat isolated trachea and bronchi with similar potencies (pEC(50)s 8.
View Article and Find Full Text PDFHigh throughput screening of the corporate compound collection led to the discovery of a novel series of substituted aminoalkoxybenzyl pyrrolidines as human urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that led to the identification of a truncated sub-series, represented by SB-436811 (1a), are described.
View Article and Find Full Text PDF1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.
View Article and Find Full Text PDFUrotensin-II (U-II), acting through its G-protein-coupled receptor, UT, is a possible contributor to hypertension. Variable functional responses to U-II, both within and between species studied to date, complicate the characterization of UT antagonists. In the cat, however, U-II causes systemic hypertension and constricts arterial segments isolated from several vascular beds.
View Article and Find Full Text PDFRAMPs (1-3) are single transmembrane accessory proteins crucial for plasma membrane expression, which also determine receptor phenotype of various G-protein-coupled receptors. For example, adrenomedullin receptors are comprised of RAMP2 or RAMP3 (AM1R and AM2R, respectively) and calcitonin receptor-like receptor (CRLR), while a CRLR heterodimer with RAMP1 yields a calcitonin gene-related peptide receptor. The major aim of this study was to determine the role of RAMPs in receptor trafficking.
View Article and Find Full Text PDFNeuromedin U (NmU), originally isolated from porcine spinal cord and later from other species, is a novel peptide that potently contracts smooth muscle. NmU interacts with two G protein-coupled receptors designated as NmU-1R and NmU-2R. This study demonstrates a potential proinflammatory role for NmU.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
October 2004
Urotensin-II (U-II), the most potent mammalian vasoconstrictor identified, and its receptor, UT, exhibits increased expression in cardiac tissue and plasma in congestive heart failure (CHF) patients. Cardiomyocyte hypertrophy is primarily responsible for increased myocardial mass associated with cardiac injury. Neurohumoral factors such as angiotensin-II, endothelin-1, catecholamines, and inflammatory cytokines are thought to mediate this response.
View Article and Find Full Text PDF