Publications by authors named "Aiyangar A"

High vertical ground reaction forces (VGRF) during landings following acrobatic elements in artistic gymnastics is associated with trunk and lower extremity injury risk. As similar data regarding injury risk factors in cheerleading are scarce, the purpose of this study was to assess VGRF in pop-off dismounts of rested and fatigued flyers in cheerleaders. Fifteen German cheerleaders were recruited for this study, including seven female flyers and eight male bases.

View Article and Find Full Text PDF

The surgical treatment of degenerative spondylolisthesis with accompanying spinal stenosis focuses mainly on decompression of the spinal canal with or without additional fusion by means of a dorsal spondylodesis. Currently, one main decision criterion for additional fusion is the presence of instability in flexion and extension X-rays. In cases of mild and stable spondylolisthesis, the optimal treatment remains a subject of ongoing debate.

View Article and Find Full Text PDF

Dynamic biplane radiographic (DBR) imaging measures continuous vertebral motion during in vivo, functional tasks with submillimeter accuracy, offering the potential to develop novel biomechanical markers for lower back disorders based on true dynamic motion rather than metrics based on static end-range of motion. Nevertheless, the reliability of DBR metrics is unclear due to the inherent variability in movement over multiple repetitions and a need to minimize radiation exposure associated with each movement repetition. The objectives of this study were to determine the margin of uncertainty (MOU) in estimating the typical intervertebral kinematics waveforms based upon only a small number of movement repetitions, and to determine the day-to-day repeatability of intervertebral kinematics waveforms measured using DBR.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how architectural design parameters of 3D-printed polymer scaffolds—specifically porosity, height-to-diameter (H/D) ratio, and pore size—affect their mechanical properties, particularly compressive strength.
  • Controlled experiments were conducted by varying these parameters, revealing that both porosity and H/D ratio significantly influence the apparent elastic modulus and bulk yield stress of the materials.
  • While pore size did not greatly affect mechanical properties, understanding these parameters can aid in optimizing bone scaffold development for better biomechanical performance.
View Article and Find Full Text PDF

Direct ink writing (DIW) is a promising extrusion-based 3D printing technology, which employs an ink-deposition nozzle to fabricate 3D scaffold structures with customizable ink formulations for tissue engineering applications. However, determining the optimal DIW process parameters such as temperature, pressure, and speed for the specific ink is essential to achieve high reproducibility of the designed geometry and subsequent mechano-biological performance for different applications, particularly for porous scaffolds of finite sizes (total volume > 1000 mm) and controlled pore size and porosity. The goal of this study was to evaluate the feasibility of fabricating Polycaprolactone (PCL) and bio-active glass (BG) composite-based 3D scaffolds of finite size using DIW.

View Article and Find Full Text PDF

Background: This study aims to analyze the effects of a novel dual-bearing shoulder prosthesis and a conventional reverse shoulder prosthesis on the deltoid and rotator cuff muscle forces for four different arm motions. The dual-bearing prosthesis is a glenoid-sparing joint replacement with a moving center of rotation. It has been developed to treat rotator cuff arthropathy, providing an increased post-operative functionality.

View Article and Find Full Text PDF

Purpose: Conventional press-fit technique for anterior cruciate ligament reconstruction (ACLR) is performed with extraction drilling of the femoral bone tunnel and manual shaping of the patellar bone plug. However, the disadvantages of this technique include variation in bone plug size and, thus, the strength of the press-fit fixation, bone loss with debris distribution within the knee joint, potential heat necrosis, and metal wear debris due to abrasion of the guide wire. To overcome these disadvantages, a novel technique involving punching of the femoral bone tunnel and standardized compression of the bone plug was introduced.

View Article and Find Full Text PDF

Excessive or incorrect loading of lumbar spinal structures is commonly assumed as one of the factors to accelerate degenerative processes, which may lead to lower back pain. Accordingly, the mechanics of the spine under medical conditions, such as scoliosis or spondylolisthesis, is well-investigated. Treatments via both conventional therapy and surgical methods alike aim at restoring a "healthy" (or at least pain-free) load distribution.

View Article and Find Full Text PDF

Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3D-scaffolds, which are utilized for tissue regeneration purposes.

View Article and Find Full Text PDF

Passive rotational stiffness of the osseo-ligamentous spine is an important input parameter for estimating in-vivo spinal loading using musculoskeletal models. These data are typically acquired from cadaveric testing. Increasingly, they are also estimated from subject-specific imaging-based finite element (FE) models, which are typically built from CT/MR data obtained in supine position and employ pure rotation kinematics.

View Article and Find Full Text PDF

The study investigated the potential for obtaining more accurate spine joint reaction force (JRF) estimates from musculoskeletal models by incorporating dynamic stereo X-ray imaging (DSX)-based in vivo lumbar vertebral rotational and translational kinematics compared to generic, rhythm (RHY)-based kinematics, while also observing the influence of accompanying inputs: intervertebral segment stiffness and neutral state. A full-body OpenSim® musculoskeletal model, constructed by combining existing lower- and upper-body models, was driven based on one volunteer's (female; age 25; 60.8 kg; 176 cm) anthropometrics and kinematics from a series of upright standing and straight-legged dynamic lifting tasks.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how lumbar fusion surgery affects the movement (kinematics) of the vertebrae adjacent to the fused area, since altered biomechanics are thought to contribute to adjacent segment disease.
  • Seven patients with degenerative spondylolisthesis underwent a series of torso flexion tests, and their spinal movements were tracked using advanced imaging before and after their surgery.
  • Findings reveal that while changes in movement patterns varied among patients, all showed maintained or increased movement at the adjacent segment post-surgery, indicating that individual responses to fusion surgery can differ significantly.
View Article and Find Full Text PDF

Intervertebral discs are important structural components of the spine but also are significant sources of morbidity, especially for the "low back" lumbar region. Mechanical damage to, or degeneration of, the lumbar discs can diminish their structural integrity and elicit debilitating low back pain. Advancement of reparative or regenerative means to treat damaged or degenerated discs is hindered by a lack of basic understanding of the disc load-deformation characteristics in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies suggest that some patients with degenerative spondylolisthesis (DS) and lumbar spinal stenosis may not need spinal fusion, as decompression alone can yield similar outcomes.
  • The study aimed to see if standard static radiographs can identify dynamic instability in DS patients compared to healthy controls, using advanced imaging techniques during torso flexion.
  • Results showed that static images underestimate movement instability, with DS patients exhibiting more diverse motion patterns during dynamic activities than the control group.
View Article and Find Full Text PDF

Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces.

View Article and Find Full Text PDF

The lumbar facet joint (FJ) is often associated with pathogenesis in the spine, but quantification of normal FJ motion remains limited to in vitro studies or static imaging of non-functional poses. The purpose of this study was to quantify lumbar FJ kinematics in healthy individuals during functional activity with dynamic stereo radiography (DSX) imaging. Ten asymptomatic participants lifted three known weights starting from a trunk-flexed (∼75°) position to an upright position while being imaged within the DSX system.

View Article and Find Full Text PDF

The study aimed to map instantaneous centers of rotation (ICRs) of lumbar motion segments during a functional lifting task and examine differences across segments and variations caused by magnitude of weight lifted. Eleven healthy participants lifted loads of three different magnitudes (4.5, 9, and 13.

View Article and Find Full Text PDF

Backpack carriage is significantly associated with a higher prevalence of low back pain. Elevated compression and shear forces in the lumbar intervertebral discs are known risk factors. A novel method of calculating the loads in the lumbar spine during backpack carriage is presented by combining physical and numerical modelling.

View Article and Find Full Text PDF

Segmental apportionment of lumbar (L2-S1) rotation is a critical input parameter for musculoskeletal models and a candidate metric for clinical assessment of spinal health, but such data are sparse. This paper aims to quantify the time-variant and load-dependent characteristics of intervertebral contributions to L2-S1 extension during a dynamic lifting task. Eleven healthy participants lifted multiple weights (4.

View Article and Find Full Text PDF

Most studies investigating human lumbar vertebral trabecular bone (HVTB) mechanical property-density relationships have presented results for the superior-inferior (SI), or "on-axis" direction. Equivalent, directly measured data from mechanical testing in the transverse (TR) direction are sparse and quantitative computed tomography (QCT) density-dependent variations in the anisotropy ratio of HVTB have not been adequately studied. The current study aimed to investigate the dependence of HVTB mechanical anisotropy ratio on QCT density by quantifying the empirical relationships between QCT-based apparent density of HVTB and its apparent compressive mechanical properties--elastic modulus (E(app)), yield strength (σ(y)), and yield strain (ε(y))--in the SI and TR directions for future clinical QCT-based continuum finite element modeling of HVTB.

View Article and Find Full Text PDF

Thrombotic microangiopathy (TMA) is a serious complication of renal transplantation. It is a morphological expression of various etiological factors. In a renal allograft, TMA can occur de novo or be a recurrent disease.

View Article and Find Full Text PDF

In this paper, we present a new methodology for subject-specific finite element modeling of the tibiofemoral joint based on in vivo computed tomography (CT), magnetic resonance imaging (MRI), and dynamic stereo-radiography (DSX) data. We implemented and compared two techniques to incorporate in vivo skeletal kinematics as boundary conditions: one used MRI-measured tibiofemoral kinematics in a nonweight-bearing supine position and allowed five degrees of freedom (excluding flexion-extension) at the joint in response to an axially applied force; the other used DSX-measured tibiofemoral kinematics in a weight-bearing standing position and permitted only axial translation in response to the same force. Verification and comparison of the model predictions employed data from a meniscus transplantation study subject with a meniscectomized and an intact knee.

View Article and Find Full Text PDF

Availability of accurate three-dimensional (3D) kinematics of lumbar vertebrae is necessary to understand normal and pathological biomechanics of the lumbar spine. Due to the technical challenges of imaging the lumbar spine motion in vivo, it has been difficult to obtain comprehensive, 3D lumbar kinematics during dynamic functional tasks. The present study demonstrates a recently developed technique to acquire true 3D lumbar vertebral kinematics, in vivo, during a functional load-lifting task.

View Article and Find Full Text PDF

A total of 170 continuous ambulatory peritoneal dialysis (CAPD) fluids were processed by various culture methods, including direct inoculation of the centrifuged sediment, inoculation into automated blood culture bottles, water lysis, Tween-80 incorporated blood agar, and Triton-X treatment of the specimen. Of 170 CAPD fluids, 127 showed the growth of bacteria/fungi. Sixty-three fluids showed growth by all methods, the water lysis alone detected 24 additional positive cultures, while Tween-80 blood agar and Triton-X yielded 30 additional positive cultures.

View Article and Find Full Text PDF

The knowledge of spinal kinematics is of paramount importance for many aspects of clinical application (i.e. diagnosis, treatment and surgical intervention) and for the development of new spinal implants.

View Article and Find Full Text PDF