Terahertz (THz) waves are widely used in the field of non-destructive testing (NDT). However, terahertz images have issues with limited spatial resolution and fuzzy features because of the constraints of the imaging equipment and imaging algorithms. To solve these problems, we propose a residual generative adversarial network based on enhanced attention (EA), which aims to pay more attention to the reconstruction of textures and details while not influencing the image outlines.
View Article and Find Full Text PDFThe endothelial glycocalyx is a carbohydrate-rich layer overlying the outermost surface of endothelial cells. It mediates intercellular interactions by specific chemical compositions (e.g.
View Article and Find Full Text PDFVascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers and lotus leaf-like topography on surface vascular cell behavior are considered. By combining multicomponent thermo-curing and replica molding, a polydimethylsiloxane surface containing bromine (PDMS-Br) with lotus leaf-like topography is obtained.
View Article and Find Full Text PDFBlood compatibility is an eternal topic of biomedical materials. The effect of heparin-mimicking polymers (HMPs) on blood compatibility has been well studied, especially the synergistic effect of sugar unit and sulfonate/sulfate unit. However, carboxylic groups also play an important role in HMPs.
View Article and Find Full Text PDFHeparin-like polymers are promising synthetic materials with biological functionalities, such as anticoagulant ability, growth factor binding to regulate cellular functions, and inflammation mediation, similar to heparin. The biocompatibility of heparin-like polymers with well-defined chemical structures has inspired many researchers to design heparin-like surfaces to explore their biological applications. The concept of the recombination of functional heparin structural units (sulfonate- and glyco-containing units) was proven to be successful in designing heparin-mimicking surfaces.
View Article and Find Full Text PDFA nitric oxide-generating polymeric coating was prepared by copolymerization of the hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA) and the comonomer 1-adamantan-1-ylmethyl methacrylate (AdaMA) with subsequent incorporation of selenocystamine. The coating was applied to polyurethane (PU) as a substrate. In the presence of a NO donor, the PU-PHA-Se surface generated nitric oxide (NO).
View Article and Find Full Text PDF