DDI2 and DDI3 (DDI2/3) are two identical genes in Saccharomyces cerevisiae encoding cyanamide (CY) hydratase. They are not only highly induced by CY, but also by a DNA-damaging agent methyl methanesulfonate (MMS), and the regulatory mechanism is unknown. In this study, we performed a modified genome-wide genetic synthetic array screen and identified Fzf1 as a zinc-finger transcriptional activator required for CY/MMS-induced DDI2/3 expression.
View Article and Find Full Text PDFThe nucleosome is a small unit of chromatin, which is dynamic in eukaryotes. Chromatin conformation and post-translational modifications affect nucleosome dynamics under certain conditions, playing an important role in the epigenetic regulation of transcription, replication and reprogramming. The Snf2 remodeling family is one of the crucial remodeling complexes that tightly regulate chromatin structure and affect nucleosome dynamics.
View Article and Find Full Text PDFCyanamide (HN-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that exposed to cyanamide resulted in strong induction of gene expression.
View Article and Find Full Text PDFFront Microbiol
November 2018
Regulating target gene expression is a common method in yeast research. In , there are several widely used regulated expression systems, such as the and Tet-off systems. However, all current expression systems possess some intrinsic deficiencies.
View Article and Find Full Text PDFThe ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond.
View Article and Find Full Text PDFDNA damage tolerance (DDT) is responsible for genomic stability and cell viability by bypassing the replication block. In Saccharomyces cerevisiae DDT employs two parallel branch pathways to bypass the DNA lesion, namely translesion DNA synthesis (TLS) and error-free lesion bypass, which are mediated by sequential modifications of PCNA. Rad5 has been placed in the error-free branch of DDT because it contains an E3 ligase domain required for PCNA polyubiquitination.
View Article and Find Full Text PDFDNA-damage tolerance (DDT) is an important mechanism for living cells to bypass replication blocks on the template strand. In Saccharomyces cerevisiae, DDT is mediated by the RAD6 epistasis group of genes, consisting of two parallel pathways: error-prone translesion DNA synthesis (TLS), and error-free lesion bypass. The two pathways are activated by sequential ubiquitination of PCNA on the Lys164 residue.
View Article and Find Full Text PDF