Multi-material structure fabrication has the potential to address some critical challenges in today's industrial paradigm. While conventional manufacturing processes cannot deliver multi-material structures in a single operation, additive manufacturing (AM) has come up as an appealing alternative. In particular, laser-directed energy deposition (L-DED) is preferred for multi-material AM.
View Article and Find Full Text PDFThin floor machining is a challenging and demanding issue, due to vibrations that create poor surface quality. Several technologies have been developed to overcome this problem. Ad hoc fixtures for a given part geometry lead to meeting quality tolerances, but since they lack flexibility, they are expensive and not suitable for low manufacturing batches.
View Article and Find Full Text PDFIn the energy and aeronautics industry, some components need to be very light but with high strength. For instance, turbine blades and structural components under rotational centrifugal forces, or internal supports, ask for low weight, and in general, all pieces in energy turbine devices will benefit from weight reductions. In space applications, a high ratio strength/weight is even more important.
View Article and Find Full Text PDFRecently developed concentric laser metal wire deposition (LMWD) heads allow metal addition processes which are independent of the deposition direction, thus enabling complex paths to be generated. The sensitivity of the process to height deviations has experimentally been observed to be greater with this type of head than with powder ones, therefore requiring more precise and local process control algorithms to be implemented. This work developed a methodology for measuring the part, layer by layer, using a 3D scanner based on structured laser light.
View Article and Find Full Text PDFHybrid machine tools combining additive and subtractive processes have arisen as a solution to increasing manufacture requirements, boosting the potentials of both technologies, while compensating and minimizing their limitations. Nevertheless, the idea of hybrid machines is relatively new and there is a notable lack of knowledge about the implications arisen from their in-practice use. Therefore, the main goal of the present paper is to fill the existing gap, giving an insight into the current advancements and pending tasks of hybrid machines both from an academic and industrial perspective.
View Article and Find Full Text PDFThe use of the Laser Metal Deposition (LMD) technology as a manufacturing and repairing technique in industrial sectors like the die and mold and aerospace is increasing within the last decades. Research carried out in the field of LMD process situates argon as the most usual inert gas, followed by nitrogen. Some leading companies have started to use helium and argon as carrier and shielding gas, respectively.
View Article and Find Full Text PDFThe present work proposes a novel manufacturing technique based on the combination of Laser Metal Deposition, Laser Beam Machining, and laser polishing processes for the complete manufacturing of complex parts. Therefore, the complete process is based on the application of a laser heat source both for the building of the preform shape of the part by additive manufacturing and for the finishing operations. Their combination enables the manufacture of near-net-shape parts and afterwards removes the excess material via laser machining, which has proved to be capable of eliminating the waviness resulting from the additive process.
View Article and Find Full Text PDF