Publications by authors named "Aitor de las Heras"

Here, we investigated novel interactions of three global regulators of the network that controls biofilm formation in the model bacterium Escherichia coli using computational network analysis, an in vivo reporter assay and physiological validation experiments. We were able to map critical nodes that govern planktonic to biofilm transition and identify 8 new regulatory interactions for CRP, IHF or Fis responsible for the control of the promoters of rpoS, rpoE, flhD, fliA, csgD and yeaJ. Additionally, an in vivo promoter reporter assay and motility analysis revealed a key role for IHF as a repressor of cell motility through the control of FliA sigma factor expression.

View Article and Find Full Text PDF

Characterization of gene expression is a central tenet of the synthetic biology design cycle. Sometimes it requires high-throughput approaches that allow quantification of the gene expression of different elements in diverse conditions. Recently, several large-scale studies have highlighted the importance of posttranscriptional regulation mechanisms and their impact on correlations between mRNA and protein abundance.

View Article and Find Full Text PDF

The XylR/Pu regulatory node of the m-xylene biodegradation pathway of Pseudomonas putida mt-2 is one of the most intricate cases of processing internal and external cues into a single controlling element. Despite this complexity, the performance of the regulatory system is determined in vivo only by the occupation of Pu by m-xylene-activated XylR and σ(54)-RNAP. The stoichiometry between these three elements defines natural system boundaries that outline a specific functional space.

View Article and Find Full Text PDF

Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen Listeria monocytogenes and its PrfA virulence regulon. PrfA-regulated genes are activated intracellularly (PrfA 'ON') but shut down outside the host (PrfA 'OFF').

View Article and Find Full Text PDF

The extant layout of the σ(54) promoter Pu, harboured by the catabolic TOL plasmid, pWW0, of Pseudomonas putida is one of the most complex instances of endogenous and exogenous signal integration known in the prokaryotic domain. In this regulatory system, all signal inputs are eventually translated into occupation of the promoter sequence by either of two necessary components: the m-xylene responsive transcriptional factor XylR and the σ(54) containing form of RNA polymerase. Modelling of these components indicated that the Pu promoter could be upgraded to respond with much greater capacity to aromatic inducers by artificially increasing the endogenous levels of both XylR and the σ(54) sigma factor, either separately or together.

View Article and Find Full Text PDF

The food-borne pathogen Listeria monocytogenes is the causative agent of the severe human and animal disease listeriosis. The persistence of this bacterium in food processing environments is mainly attributed to its ability to form biofilms. The search for proteins associated with biofilm formation is an issue of great interest, with most studies targeting the whole bacterial proteome.

View Article and Find Full Text PDF

Prokaryotic transcription factors (TFs) that bind small xenobiotic molecules (e.g., TFs that drive genes that respond to environmental pollutants) often display a promiscuous effector profile for analogs of the bona fide chemical signals.

View Article and Find Full Text PDF

The transcriptional regulator PrfA controls key virulence determinants of the facultative intracellular pathogen Listeria monocytogenes. PrfA-dependent gene expression is strongly induced within host cells. While the basis of this activation is unknown, the structural homology of PrfA with the cAMP receptor protein (Crp) and the finding of constitutively activated PrfA* mutants suggests it may involve ligand-induced allostery.

View Article and Find Full Text PDF

A cornerstone of Synthetic Biology is the engineering of gene regulatory networks. Construction of such biological circuits has been used not only to elucidate the dynamics of gene expression but also for designing whole-cell biosensors that translate environmental signals into quantifiable outputs. To this end, distinct components of given regulatory systems are rationally rewired in a way that translates an external stimulus (for instance, the presence of one chemical species) into a measurable readout typically fluorescence or luminescence.

View Article and Find Full Text PDF

The regulation of the DNT pathway for biodegradation of 2,4-dinitrotoluene of Burkholderia sp. DNT has been examined by exporting each of its components to Pseudomonas putida KT2440. The cognate regulator DntR does not respond to the pathway substrate, but to the non-substrate salicylate.

View Article and Find Full Text PDF

Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne infection. These bacteria live as soil saprotrophs on decaying plant matter but also as intracellular parasites, using the cell cytosol as a replication niche. PrfA, a regulatory protein, integrates a number of environmental cues that signal the transition between these two contrasting lifestyles, activating a set of key virulence factors during host infection.

View Article and Find Full Text PDF

XylR is a σ⁵⁴-dependent transcriptional factor of Pseudomonas putida that activates the Pu promoter of the TOL plasmid upon binding its natural effector, m-xylene. The search for mutants of the signal-sensing module of XylR that respond to the xenobiotic compound 2,4-dinitrotoluene recurrently yields protein variants with a broad effector range. These mutants had amino acid changes not only in the effector recognition moiety (A module), but also in the inter-domain B linker of the protein.

View Article and Find Full Text PDF

While many types of bacteria have been engineered to produce an optical output in response to given analytes in a culture, their use for extensive, in situ monitoring of distinct chemical species in soil is hampered by a dearth of practicable spreading schemes. In this work, we report and validate a comprehensive system for the long-term preservation of Pseudomonas putida cells genetically designed for biosensing benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil, along with a procedure to formulate, spread, and vigorously activate such bacteria at the desired site and occasion. To this end, various known lyoprotectants were tested for promoting the long-term maintenance of biosensor cells with quite variable outcomes.

View Article and Find Full Text PDF

A large number of prokaryotic regulatory elements have been interfaced artificially with biological circuits that execute specific expression programs. Engineering such circuits involves the association of input/output components that perform discrete signal-transfer steps in an autonomous fashion while connected to the rest of the network with a defined topology. Each of these nodes includes a signal-recognition component for the detection of the relevant physicochemical or biological stimulus, a molecular device able to translate the signal-sensing event into a defined output and a genetic module capable of understanding such an output as an input for the next component of the circuit.

View Article and Find Full Text PDF

A broad host range, orthogonal genetic platform has been developed to format sensor circuits in the chromosome of Gram-negative microorganisms destined for environmental release as bioindicators of toxic or perilous compounds (e.g. explosives) in soil.

View Article and Find Full Text PDF

Although different biological approaches for detection of anti-personnel mines and other unexploded ordnance (UXO) have been entertained, none of them has been rigorously documented thus far in the scientific literature. The industrial 2,4,6 trinitrotoluene (TNT) habitually employed in the manufacturing of mines is at all times tainted with a small but significant proportion of the more volatile 2,4 dinitrotoluene (2,4 DNT) and other nitroaromatic compounds. By using mutation-prone PCR and DNA sequence shuffling we have evolved in vitro and selected in vivo variants of the effector recognition domain of the toluene-responsive XylR regulator of the soil bacterium Pseudomonas putida that responds to mono-, bi- and trinitro substituted toluenes.

View Article and Find Full Text PDF