Publications by authors named "Aitana Neves"

Whole genome sequencing (WGS) has become a vital tool in clinical microbiology, playing an important role in outbreak investigations, molecular surveillance, and identification of bacterial species, resistance mechanisms and virulence factors. However, the complexity of WGS data presents challenges in interpretation and reporting, requiring tailored strategies to enhance efficiency and impact. This study explores the diverse needs of key stakeholders in healthcare, including clinical management, laboratory work, public surveillance and epidemiology, infection prevention and control, and academic research, regarding WGS-based reporting of clinically relevant bacterial species.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of reducing genomic sequencing on SARS-CoV-2 surveillance outcomes in Switzerland, analyzing over 143,000 sequences.
  • Results show that while some key outcomes like variant detection and cluster analysis could still be achieved with only 35% of the original sequencing effort, this reduction varies significantly by viral lineage.
  • The research highlights the need for genomic surveillance programs to balance cost and public health benefits, emphasizing that reduced sequencing may compromise accuracy in tracking emerging variants of concern.
View Article and Find Full Text PDF

The COVID-19 pandemic has exemplified the importance of interoperable and equitable data sharing for global surveillance and to support research. While many challenges could be overcome, at least in some countries, many hurdles within the organizational, scientific, technical and cultural realms still remain to be tackled to be prepared for future threats. We propose to (i) continue supporting global efforts that have proven to be efficient and trustworthy toward addressing challenges in pathogen molecular data sharing; (ii) establish a distributed network of Pathogen Data Platforms to (a) ensure high quality data, metadata standardization and data analysis, (b) perform data brokering on behalf of data providers both for research and surveillance, (c) foster capacity building and continuous improvements, also for pandemic preparedness; (iii) establish an International One Health Pathogens Portal, connecting pathogen data isolated from various sources (human, animal, food, environment), in a truly One Health approach and following FAIR principles.

View Article and Find Full Text PDF

The Swiss Pathogen Surveillance Platform (SPSP) is a shared secure surveillance platform between human and veterinary medicine, to also include environmental and foodborne isolates. It enables rapid and detailed transmission monitoring and outbreak surveillance of pathogens using whole genome sequencing data and associated metadata. It features controlled data access, complex dynamic queries, dedicated dashboards and automated data sharing with international repositories, providing actionable results for public health and the vision to improve societal well-being and health.

View Article and Find Full Text PDF

Background: Antibiotic resistance and its rapid dissemination around the world threaten the efficacy of currently-used medical treatments and call for novel, innovative approaches to manage multi-drug resistant infections. Phage therapy, i.e.

View Article and Find Full Text PDF

Centrioles and basal bodies (referred to hereafter as centrioles for simplicity) are microtubule-based cylindrical organelles that are typically ∼450-nm long and ∼250nm in diameter. The centriole is composed of three distinct regions: the distal part characterized by microtubule doublets, the central core that harbors microtubule triplets, which are also present in the proximal part that also contains the cartwheel, a structure crucial for centriole assembly. The cartwheel was initially revealed by conventional electron microscopy of resin-embedded samples and is thought to impart the near universal ninefold symmetry of centrioles.

View Article and Find Full Text PDF

All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation.

View Article and Find Full Text PDF

Background: Centrioles are cylindrical microtubule-based structures whose assembly is critical for the formation of cilia, flagella, and centrosomes. The centriole proximal region harbors a cartwheel that dictates the 9-fold symmetry of centrioles. Although the cartwheel architecture has been recently analyzed, how it connects to the peripheral microtubules is not understood.

View Article and Find Full Text PDF

Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction.

View Article and Find Full Text PDF