Publications by authors named "Aiste Karpusenkaite"

The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts.

View Article and Find Full Text PDF

The aim of the study is to evaluate the performance of various mathematical modelling methods, while forecasting medical waste generation using Lithuania's annual medical waste data. Only recently has a hazardous waste collection system that includes medical waste been created and therefore the study access to gain large sets of relevant data for its research has been somewhat limited. According to data that was managed to be obtained, it was decided to develop three short and extra short datasets with 20, 10 and 6 observations.

View Article and Find Full Text PDF