Background: Surgical guides can improve the precision of implant placement and minimize procedural errors and their related complications. This study aims to determine how different disinfection and sterilization methods affect the size changes of drill guide templates and the mechanical properties of 3D-printed surgical guides made with LCD technology.
Methods: We produced a total of 100 samples.
Background: No specific evaluation of palliative care (PC) has been carried out to date despite its effective integration into Moroccan healthcare strategy.
Aims: To analyse the evolution of PC-related research in Morocco over the last two decades.
Methods: In this study, articles indexed in Web Of Science and PubMED that include the words Morocco and palliative, in their content, in French and English, with at least one author affiliated to a Moroccan institution and published between 2000 and 2020, were evaluated with bibliometrics methods to determine a timeline, a mapping of publications and collaborations, and the main journals, types and topics of publications.
Background: High-frequency oscillatory ventilation (HFOV) is used in cases of neonatal and pediatric acute respiratory failure, sometimes even as the primary ventilatory mode. Allowing patients (at least neonates) on HFOV to breathe spontaneously soon after intubation has been shown to be feasible, and this is becoming a more generally used approach for infants and small children. However, such an approach may increase the imposed work of breathing (WOB), raising the question of whether the imposed WOB varies with the use of newer-generation HFOV devices, which operate according to different functional principles.
View Article and Find Full Text PDFBackground: Recommendations regarding ventilation during cardiopulmonary resuscitation (CPR) are based on a low level of scientific evidence. We hypothesized that practices about ventilation during CPR might be heterogeneous and may differ worldwide. To address this question, we surveyed physicians from several countries on their practices during CPR.
View Article and Find Full Text PDFThe purpose of this work is the conception and implementation of an artificial active respiratory system that allows the simulation of human respiratory activities. The system consists of two modules, mechanical and electronical. The first one represents a cylindrical lung adjustable in resistance and compliance.
View Article and Find Full Text PDFBackground: Proportional assist ventilation+ (PAV+) delivers airway pressure (P aw) in proportion to patient effort (P mus) by using the equation of motion of the respiratory system. PAV+ calculates automatically respiratory mechanics (elastance and resistance); the work of breathing (WOB) is estimated by the ventilator. The accuracy of P mus estimation and hence accuracy of the delivered P aw and WOB calculation have not been assessed.
View Article and Find Full Text PDFThe optimal ventilation strategy during cardiopulmonary resuscitation (CPR) is unknown. Chest compression (CC) generates circulation, while during decompression, thoracic recoil generates negative pressure and venous return. Continuous flow insufflation of oxygen (CFI) allows noninterrupted CC and generates positive airway pressure (Paw).
View Article and Find Full Text PDFObjectives: To understand the potential equivalence between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory muscle unloading. To compare the respiratory pattern, variability, synchronization, and neuromuscular coupling within comparable ranges of assistance.
Design: Prospective single-center physiologic study.
Background: Jet nebulizers constitute the aerosolization devices most frequently used during mechanical ventilation. Continuous nebulization can influence the delivered tidal volume (V(T)) and lead to significant medication loss during expiration. Ventilators thus provide integrated jet nebulization systems that are synchronized during inspiration and ostensibly keep VT constant.
View Article and Find Full Text PDFKnowledge of the physiological mechanisms that govern cardiopulmonary interactions during cardiopulmonary resuscitation (CPR) allows to better assess risks and benefits of ventilation. Ventilation is required to maintain gas exchange, particularly when CPR is prolonged. Nevertheless, conventional ventilation (bag mask or mechanical ventilation) may be harmful when excessive or when chest compressions are interrupted.
View Article and Find Full Text PDFObjective: During invasive mechanical ventilation, inspired gases must be humidified. We previously showed that high ambient temperature greatly impaired the hygrometric performance of heated wire-heated humidifiers. The aim of this bench and clinical study was to assess the humidification performance of passive and active heat and moisture exchangers (HMEs) and the impact of ambient temperature and ventilator settings.
View Article and Find Full Text PDFMask or Non-invasive ventilation (NIV) is used for critically ill patients with acute respiratory failure (ARF): acute exacerbation of chronic obstructive bronchopulmonary disease and severe cardiogenic pulmonary edema are considered as the best indications for NIV since it improves the outcome of these patients. This technique is also proposed for hypoxemic respiratory failure, with more various results. To be effective here, NIV must be established early enough and should not delay intubation if required.
View Article and Find Full Text PDFPurpose: Providing mechanical ventilation is challenging at supra-atmospheric pressure. The higher gas density increases resistance, reducing the flow delivered by the ventilator. A new hyperbaric ventilator (Siaretron IPER 1000) is said to compensate for these effects automatically.
View Article and Find Full Text PDFPurpose: Ultrasonography allows the direct observation of the diaphragm. Its thickness variation measured in the zone of apposition has been previously used to diagnose diaphragm paralysis. We assessed the feasibility and accuracy of this method to assess diaphragmatic function and its contribution to respiratory workload in critically ill patients under non-invasive ventilation.
View Article and Find Full Text PDFBackground: Different kinds of ventilators are available to perform noninvasive ventilation (NIV) in ICUs. Which type allows the best patient-ventilator synchrony is unknown. The objective was to compare patient-ventilator synchrony during NIV between ICU, transport—both with and without the NIV algorithm engaged—and dedicated NIV ventilators.
View Article and Find Full Text PDFPurpose: To evaluate the efficacy of delivering a mixture of helium and oxygen gas (He–O2) in spontaneous ventilation. Three high oxygen flow reservoir masks were tested: the Heliox21, specifically designed for helium; the Hi-Ox80 mask, with an inspiratory and an expiratory valve; and a standard high-concentration face mask.
Methods: This prospective randomized crossover study was performed in six healthy volunteers in a laboratory setting.
Objectives: The level of pressure-support ventilation can affect mean airway pressure and potentially lung volume, but its increase is usually associated with a reduced respiratory rate, and the net effects on the gas exchange process and its components, including end-expiratory lung volume, have not been carefully studied. We measured pulmonary conductance for gas exchange based on lung diffusion for carbon monoxide in patients receiving pressure-support ventilation.
Design: Prospective, randomized, crossover study.
Purpose: Intrapulmonary percussive ventilation (IPV) is a high-frequency ventilation modality that can be superimposed on spontaneous breathing. IPV may diminish respiratory muscle loading and help to mobilize secretions. The aim of this prospective study was to assess the short-term effects of IPV in patients at high risk for extubation failure who were receiving preventive non-invasive ventilation (NIV) after extubation.
View Article and Find Full Text PDFBackground: A simple method for effective bronchodilator aerosol delivery while administering continuing continuous positive airway pressure (CPAP) would be useful in patients with severe bronchial obstruction.
Objective: To assess the effectiveness of bronchodilator aerosol delivery during CPAP generated by the Boussignac CPAP system and its optimal humidification system.
Methods: First we assessed the relationship between flow and pressure generated in the mask with the Boussignac CPAP system.
Purpose: High-volume low-pressure (HVLP) cuffs on endotracheal tubes do not fully protect the lower airway from leakage of potentially contaminated secretions down the longitudinal folds within the cuff. Here, our purpose was to evaluate potential effects of positive end-expiratory pressure (PEEP), inspiratory effort intensity, and tube characteristics on fluid leakage past the cuff.
Methods: This benchtop study at a research laboratory used a tracheal tube inserted into an artificial Plexiglas trachea connected to a ventilator and lung model.
Purpose: During volume-controlled ventilation, part of the volume delivered is compressed into the circuit. To correct for this phenomenon, modern ventilators use compensation algorithms. Humidity and temperature also influence the delivered volume.
View Article and Find Full Text PDFObjective: In acute respiratory distress syndrome, alveolar recruitment improves gas exchange only if perfusion of the recruited alveolar units is adequate. To evaluate functional recruitment induced by positive end-expiratory pressure, we assessed pulmonary conductance for gas exchange based on lung diffusion for carbon monoxide and its components, including pulmonary capillary blood volume.
Design: Prospective, randomized, crossover study.
Objective: To compare the physiologic effects of noninvasive pressure-support ventilation (NPSV) delivered by a facemask, a helmet with the same settings, and a helmet with specific settings. Inspiratory muscle effort, gas exchange, patient-ventilator synchrony, and comfort were evaluated.
Design: Prospective crossover study.