The structure of assemblies of block copolymers composed of thermosensitive, biodegradable poly(N-(2-hydroxypropyl) methacrylamide-dilactate) and poly(ethylene glycol) (pHPMAmDL-b-PEG) has been studied by small-angle neutron scattering (SANS). Three amphiphilic copolymers with a fixed PEG of 5 kDa and a partially deuterated pHPMAmDL(d) block of 6700, 10400, or 21200 Da were used to form micelles in aqueous media by heating the polymeric solution from below to above the cloud point temperature (around 10 degrees C) of the thermosensitive block. Simultaneous and quantitative analysis of the scattering cross sections obtained at three different solvent contrasts is expedited using core-shell model, which assumed a homogeneous core of uniform scattering length density.
View Article and Find Full Text PDFMethoxypoly(ethylene glycol)-b-oligo-L-lactate (mPEG-b-OLA) diblock oligomers with monodisperse OLA blocks were obtained by fractionation of polydisperse block oligomers using preparative HPLC. The fractionated oligomers were composed of an mPEG block with a molecular weight of 350, 550, or 750 and an OLA block with a degree of polymerization of 4, 6, 8, or 10. The diblock oligomers with a low PEG content were fully amorphous, with glass transition temperatures ranging from -60 to -20 degrees C, indicating that the blocks were miscible.
View Article and Find Full Text PDFThe aim of this study was to design a thermosensitive polymeric micelle system with a relatively fast degradation time of around 1 day. These micelles are of interest for the (targeted) delivery of biologically active molecules. Therefore, N-(2-hydroxyethyl)methacrylamide-oligolactates (HEMAm-Lac(n)()) were synthesized and used as building blocks for biodegradable (block co) polymers.
View Article and Find Full Text PDFAmphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight.
View Article and Find Full Text PDF