Publications by authors named "Aisling M Redmond"

Esophageal adenocarcinoma is a prominent example of cancer characterized by frequent amplifications in oncogenes. However, the mechanisms leading to amplicons that involve breakage-fusion-bridge cycles and extrachromosomal DNA are poorly understood. Here, we use 710 esophageal adenocarcinoma cases with matched samples and patient-derived organoids to disentangle complex amplicons and their associated mechanisms.

View Article and Find Full Text PDF

Unlabelled: Intestinal metaplasia in the esophagus (Barrett's esophagus IM, or BE-IM) and stomach (GIM) are considered precursors for esophageal and gastric adenocarcinoma, respectively. We hypothesize that BE-IM and GIM follow parallel developmental trajectories in response to differing inflammatory insults. Here, we construct a single-cell RNA-sequencing atlas, supported by protein expression studies, of the entire gastrointestinal tract spanning physiologically normal and pathologic states including gastric metaplasia in the esophagus (E-GM), BE-IM, atrophic gastritis, and GIM.

View Article and Find Full Text PDF

Oesophageal adenocarcinoma (OAC) provides an ideal case study to characterize large-scale rearrangements. Using whole genome short-read sequencing of 383 cases, for which 214 had matched whole transcriptomes, we observed structural variations (SV) with a predominance of deletions, tandem duplications and inter-chromosome junctions that could be identified as LINE-1 mobile element (ME) insertions. Complex clusters of rearrangements resembling breakage-fusion-bridge cycles or extrachromosomal circular DNA accounted for 22% of complex SVs affecting known oncogenes.

View Article and Find Full Text PDF

Background: To investigate the mechanisms driving regulatory evolution across tissues, we experimentally mapped promoters, enhancers, and gene expression in the liver, brain, muscle, and testis from ten diverse mammals.

Results: The regulatory landscape around genes included both tissue-shared and tissue-specific regulatory regions, where tissue-specific promoters and enhancers evolved most rapidly. Genomic regions switching between promoters and enhancers were more common across species, and less common across tissues within a single species.

View Article and Find Full Text PDF

Steroid regulated cancer cells use nuclear receptors and associated regulatory proteins to orchestrate transcriptional networks to drive disease progression. In primary breast cancer, the coactivator AIB1 promotes estrogen receptor (ER) transcriptional activity to enhance cell proliferation. The function of the coactivator in ER metastasis however is not established.

View Article and Find Full Text PDF

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations.

View Article and Find Full Text PDF

Genome stability relies on proper coordination of mitosis and cytokinesis, where dynamic microtubules capture and faithfully segregate chromosomes into daughter cells. With a high-content RNAi imaging screen targeting more than 2,000 human lncRNAs, we identify numerous lncRNAs involved in key steps of cell division such as chromosome segregation, mitotic duration and cytokinesis. Here, we provide evidence that the chromatin-associated lncRNA, linc00899, leads to robust mitotic delay upon its depletion in multiple cell types.

View Article and Find Full Text PDF

HER2 is a transmembrane receptor tyrosine kinase, which plays a key role in breast cancer due to a common genomic amplification. It is used as a marker to stratify patients in the clinic and is targeted by a number of drugs including Trastuzumab and Lapatinib. HER2 has previously been shown to translocate to the nucleus.

View Article and Find Full Text PDF

Steroid receptor coactivator 1 (SRC-1) interacts with nuclear receptors and other transcription factors (TFs) to initiate transcriptional networks and regulate downstream genes which enable the cancer cell to evade therapy and metastasise. Here we took a top-down discovery approach to map out the SRC-1 transcriptional network in endocrine resistant breast cancer. First, rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) was employed to uncover new SRC-1 TF partners.

View Article and Find Full Text PDF

Purpose: Acquired resistance to aromatase inhibitor (AI) therapy is a major clinical problem in the treatment of breast cancer. The detailed mechanisms of how tumor cells develop this resistance remain unclear. Here, the adapted function of estrogen receptor (ER) to an estrogen-depleted environment following AI treatment is reported.

View Article and Find Full Text PDF

Nature 498, 511–515 doi:; DOI: 10.1038/nature12209; published online May 02 2013 Nature 498, 516–520 doi:; DOI: 10.1038/nature12210; published online May 02 2013 Recent reports established transcription of enhancer-derived RNAs (eRNAs), while the evidence for their functional significance remained mostly speculative.

View Article and Find Full Text PDF

A report from the Keystone Symposium on Molecular and Cellular Biology, 'Deregulation of transcription in cancer: controlling cell fate decisions', Killarney, Ireland, 21-26 July 2009.

View Article and Find Full Text PDF

Purpose: This study investigates the role of the p160 coactivators AIB1 and SRC-1 independently, and their interactions with the estrogen receptor, in the development of resistance to endocrine treatments.

Experimental Design: The expression of the p160s and the estrogen receptor, and their interactions, was analyzed by immunohistochemistry and quantitative coassociation immunofluorescent microscopy, using cell lines, primary breast tumor cell cultures, and a tissue microarray with breast cancer samples from 560 patients.

Results: Coassociation of the p160s and estrogen receptor alpha was increased in the LY2 endocrine-resistant cell line following treatment with tamoxifen in comparison with endocrine-sensitive MCF-7 cells.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is associated with breast tumour progression. Clinical and molecular studies implicate human epidermal growth factor receptor 2 (HER2) in the regulation of COX-2 expression. Recent reports raise the possibility that HER2 could mediate these effects through direct transcriptional mechanisms.

View Article and Find Full Text PDF