SYNGAP1-ID is a neurodevelopmental disorder caused by a mutation of the SYNGAP1 gene. Characterized by moderate to severe developmental delay, it is associated with several physical and behavioral issues as well as additional diagnoses, including autism. However, it is not known whether social cognitive differences seen in SYNGAP1-ID are similar to those previously identified in idiopathic or other forms of autism.
View Article and Find Full Text PDFAm J Intellect Dev Disabil
May 2024
This study aimed to describe the behavioral profile of individuals with SYNGAP1-ID. Parents/carers of 30 individuals aged 3-18 years old with a diagnosis of SYNGAP1-ID and 21 typically developing individuals completed the Vineland-3 Adaptive Behavior Scale and the Child Behavior Checklist. We found that those with SYNGAP1-ID showed fewer adaptive behaviors and higher levels of internalizing and externalizing behaviors across almost all domains compared to typically developing controls.
View Article and Find Full Text PDFSYNGAP1-related ID is a genetic condition characterised by global developmental delay and epilepsy. Individuals with SYNGAP1-related ID also commonly show differences in attention and social communication/interaction and frequently receive additional diagnoses of Autism Spectrum Disorder (ASD) or Attention Deficit Hyperactivity Disorder (ADHD). We thus set out to quantify ASD and ADHD symptoms in children with this syndrome.
View Article and Find Full Text PDFBackground: SYNGAP1-related intellectual disability (ID) is a recently described neurodevelopmental disorder that is caused by pathogenic variation in the SYNGAP1 gene. To date, the behavioural characteristics of this disorder have mainly been highlighted via the prevalence of existing diagnoses in case series. We set out to detail the behavioural features of this disorder by undertaking interviews with those who have a child with SYNGAP1-related ID to allow them to describe their child's behaviour.
View Article and Find Full Text PDFTransl Psychiatry
January 2022
Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome.
View Article and Find Full Text PDFNeurodevelopmental disorders are frequently associated with sleep disturbances. One class of neurodevelopmental disorders, the genetic synaptopathies, is caused by mutations in genes encoding proteins found at the synapse. Mutations in these genes cause derangement of synapse development and function.
View Article and Find Full Text PDF