In noisy environments, our ability to understand speech benefits greatly from seeing the speaker's face. This is attributed to the brain's ability to integrate audio and visual information, a process known as multisensory integration. In addition, selective attention plays an enormous role in what we understand, the so-called cocktail-party phenomenon.
View Article and Find Full Text PDFSeeing a speaker's face benefits speech comprehension, especially in challenging listening conditions. This perceptual benefit is thought to stem from the neural integration of visual and auditory speech at multiple stages of processing, whereby movement of a speaker's face provides temporal cues to auditory cortex, and articulatory information from the speaker's mouth can aid recognizing specific linguistic units (e.g.
View Article and Find Full Text PDFRecent work using electroencephalography has applied stimulus reconstruction techniques to identify the attended speaker in a cocktail party environment. The success of these approaches has been primarily based on the ability to detect cortical tracking of the acoustic envelope at the scalp level. However, most studies have ignored the effects of visual input, which is almost always present in naturalistic scenarios.
View Article and Find Full Text PDFSpeech is a multisensory percept, comprising an auditory and visual component. While the content and processing pathways of audio speech have been well characterized, the visual component is less well understood. In this work, we expand current methodologies using system identification to introduce a framework that facilitates the study of visual speech in its natural, continuous form.
View Article and Find Full Text PDF