Publications by authors named "Aishwarya P Deshpande"

Telomerase adds telomeric repeats to chromosome ends by processive copying of a template within the telomerase RNA bound to telomerase reverse transcriptase. Telomerase RNAs have single-stranded regions that separate the template from a 5' stem and 3' pseudoknot, and mammals gained additional stem P2a.1 separating the template from the pseudoknot.

View Article and Find Full Text PDF

Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1.

View Article and Find Full Text PDF

Mitochondrial promoters of Saccharomyces cerevisiae share a conserved -8 to +1 sequence with +1+2 AA, AG or AT initiation sequence, which dictates the efficiency of transcription initiation by the mitochondrial RNA polymerase Rpo41 and its initiation factor Mtf1. We used 2-aminopurine fluorescence to monitor promoter melting and measured the kcat/Km of 2-mer synthesis to quantify initiation efficiency with systematic changes of the +1+2 base pairs to matched and mismatched pairs. We show that AA promoters are most efficient, followed by AG and then AT promoters, and the differences in their efficiencies stem specifically from differential melting of +1+2 region without affecting melting of the upstream -4 to -1 region.

View Article and Find Full Text PDF

The DNA-dependent RNA polymerases induce specific conformational changes in the promoter DNA during transcription initiation. Fluorescence spectroscopy sensitively monitors these DNA conformational changes in real time and at equilibrium providing powerful ways to estimate interactions in transcriptional complexes and to assess how transcription is regulated by the promoter DNA sequence, transcription factors, and small ligands. Ensemble fluorescence methods described here probe the individual steps of promoter binding, bending, opening, and transition into the elongation using T7 phage and mitochondrial transcriptional systems as examples.

View Article and Find Full Text PDF

Mitochondria are the major supplier of cellular energy in the form of ATP. Defects in normal ATP production due to dysfunctions in mitochondrial gene expression are responsible for many mitochondrial and aging related disorders. Mitochondria carry their own DNA genome which is transcribed by relatively simple transcriptional machinery consisting of the mitochondrial RNAP (mtRNAP) and one or more transcription factors.

View Article and Find Full Text PDF

Promoter recognition is the first and the most important step during gene expression. Our studies of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) transcription machinery provide mechanistic understandings on the basic problem of how the mt RNA polymerase (RNAP) with the help of the initiation factor discriminates between promoter and non-promoter sequences. We have used fluorescence-based approaches to quantify DNA binding, bending, and opening steps by the core mtRNAP subunit (Rpo41) and the transcription factor (Mtf1).

View Article and Find Full Text PDF

Transcription of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) genome is catalyzed by nuclear-encoded proteins that include the core RNA polymerase (RNAP) subunit Rpo41 and the transcription factor Mtf1. Rpo41 is homologous to the single-subunit bacteriophage T7/T3 RNAP. Its ∼80-kDa C-terminal domain is highly conserved among mt RNAPs, but its ∼50-kDa N-terminal domain (NTD) is less conserved and not present in T7/T3 RNAP.

View Article and Find Full Text PDF