The use of monoclonal antibodies for the control of drug resistant nosocomial bacteria may alleviate a reliance on broad spectrum antimicrobials for treatment of infection. We identify monoclonal antibodies that may prevent infection caused by carbapenem resistant Acinetobacter baumannii. We use human immune repertoire mice (Kymouse platform mice) as a surrogate for human B cell interrogation to establish an unbiased strategy to probe the antibody-accessible target landscape of clinically relevant A.
View Article and Find Full Text PDFObjectives: The multidrug-resistant bacteria Acinetobacter baumannii is a major cause of hospital-associated infection; a vaccine could significantly reduce this burden. The aim was to develop a clinically relevant model of A. baumannii respiratory tract infection and to test the impact of different immunization routes on protective immunity provided by an outer membrane vesicle (OMV) vaccine.
View Article and Find Full Text PDFCentral to the regulation of bacterial gene expression is the multisubunit enzyme RNA polymerase (RNAP), which is responsible for catalyzing transcription. As all adaptive processes are underpinned by changes in gene expression, the RNAP can be considered the major mediator of any adaptive response in the bacterial cell. In bacterial pathogens, theoretically, single nucleotide polymorphisms (SNPs) in genes that encode subunits of the RNAP and associated factors could mediate adaptation and confer a selective advantage to cope with biotic and abiotic stresses.
View Article and Find Full Text PDFExpression of β-lactamase is the single most prevalent determinant of antibiotic resistance, rendering bacteria resistant to β-lactam antibiotics. In this article, we describe the development of an antibiotic prodrug that combines ciprofloxacin with a β-lactamase-cleavable motif. The prodrug is only bactericidal after activation by β-lactamase.
View Article and Find Full Text PDFNasal colonization by the pathogen Staphylococcus aureus is a risk factor for subsequent infection. Loss of function mutations in the gene encoding the virulence regulator Rsp are associated with the transition of S. aureus from a colonizing isolate to one that causes bacteraemia.
View Article and Find Full Text PDFStaphylococcus aureus is a major cause of bacteremia, which frequently results in serious secondary infections such as infective endocarditis, osteomyelitis, and septic arthritis. The ability of S. aureus to cause such a wide range of infections has been ascribed to its huge armoury of different virulence factors, many of which are under the control of the quorum-sensing accessory gene regulator (Agr) system.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2013
Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy.
View Article and Find Full Text PDF