Controlled synthesis of colloidal all-inorganic lead halide perovskite semiconductor nanocrystals, such as CsPbBr, with tunable size, shape, composition, and crystalline phase have recently attracted wide interest for photonic and optoelectronic applications. Herein, we report a new strategy for using alkyl-thiols to induce the transformation of CsPbBr to perovskite-related cesium lead halide (CsPbBr) with controlled morphology and a crystalline phase at room temperature. By rational tuning the ratios of the alkyl-thiol ligands to alkyl-amines or to alkyl-acids, the as-synthesized colloidal nanocrystals can be rationally controlled from orthorhombic crystalline-phase CsPbBr to tetragonal-phase CsPbBr nanosheets and nanowires with high yield.
View Article and Find Full Text PDF